APNIC Training

Internet Routing Registry (IRR)

July 21, 2010 - Paro, Bhutan

16 South Asian Network Operators Group (SANOG) Conference

In conjunction with Bhutan Telecom Ltd.

Introduction

- Presenters
 - Nurul Islam Roman
 - Training Officer (Technical)
 - <u>nurul@apnic.net</u>

Assumptions & ObjectivesAssumptionsObjectives

- Are current or prospective
 APNIC members
- Have not submitted many requests
- Are not familiar or up-todate with address policies
- Are not familiar with procedures
- Are interested in address
 management

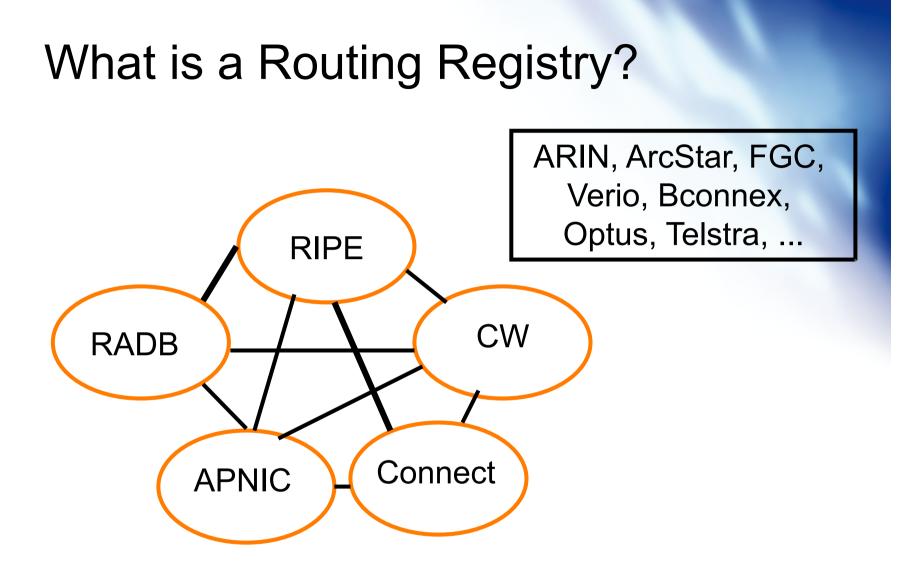
- To provide an understanding of address management
- To provide a working knowledge of the procedures for requesting resources from APNIC and managing these
- To keep membership upto-date with the latest policies
- Liaise with members.

What is a Routing Registry?

- A repository (database) of Internet routing policy information
 - Autonomous Systems exchanges routing information via BGP
 - Exterior routing decisions are based on policy based rules
 - However BGP does not provides a mechanism to publish/communicate the policies themselves
 - RR provides this functionality
- Routing policy information is expressed in a series of objects

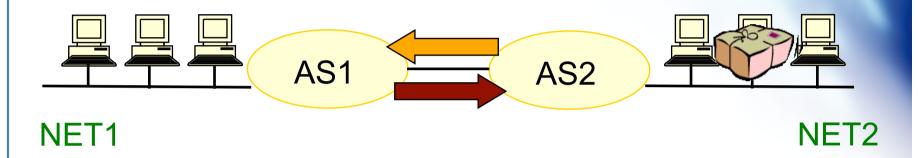
Routing registry objects

- Route, aut-num, inet-rtr, peering-set, ASset, rtr-set, filter-set
 - Each object has its own purpose
 - Together express routing policies
- More details covered later


🖉 APNIC

What is a Routing Registry?

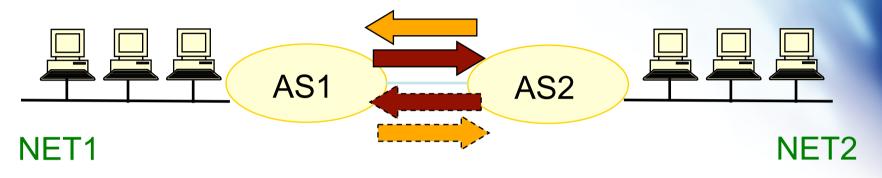
- Global Internet Routing Registry database
 - http://www.irr.net/
 - Uses RPSL
- Stability and consistency of routing


 network operators share information
- Both public and private databases
 - These databases are independent
 - but some exchange data
 - only register your data in one database

NIC APNIC

IRR = APNIC RR + RIPE DB + RADB + C&W + ARIN + ...

Representation of routing policy


In order for traffic to flow from NET2 to NET1 between AS1 and AS2:

AS1 has to announce NET1 to AS2 via BGP And AS2 has to accept this information and use it

Resulting in packet flow from NET2 to NET1

🔌 APNIC

Representation of routing policy (cont.)

In order for traffic to flow towards from NET1 to NET2:

AS2 must announce NET2 to AS1

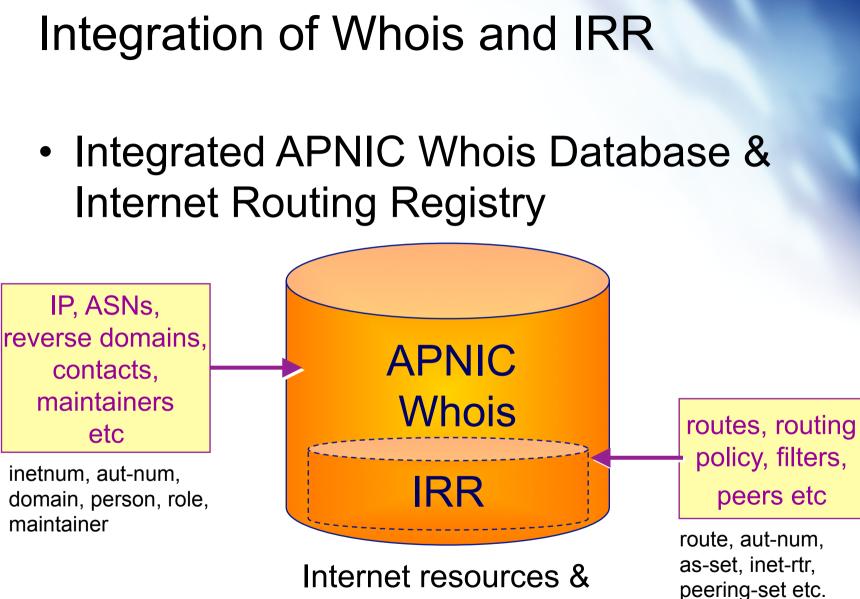
And AS1 has to accept this information and use it

Resulting in packet flow from NET 1 to NET2

🔌 APNIC

What is routing policy?

- Description of the routing relationship between autonomous systems
 - Who are my BGP peers?
 - Customer, peers, upstream
 - What routes are:
 - Originated by each neighbour?
 - Imported from each neighbour?
 - Exported to each neighbour?
 - Preferred when multiple routes exist?
 - What to do if no route exists?
 - What routes to aggregate?


APNIC Database & the IRR

- APNIC whois Database
 - Two databases in one
- Public Network Management Database
 - "whois" info about networks & contact persons
 - IP addresses, AS numbers etc
- Routing Registry
 - contains routing information
 - routing policy, routes, filters, peers etc.
 - APNIC RR is part of the global IRR

📎 APNIC

APNIC

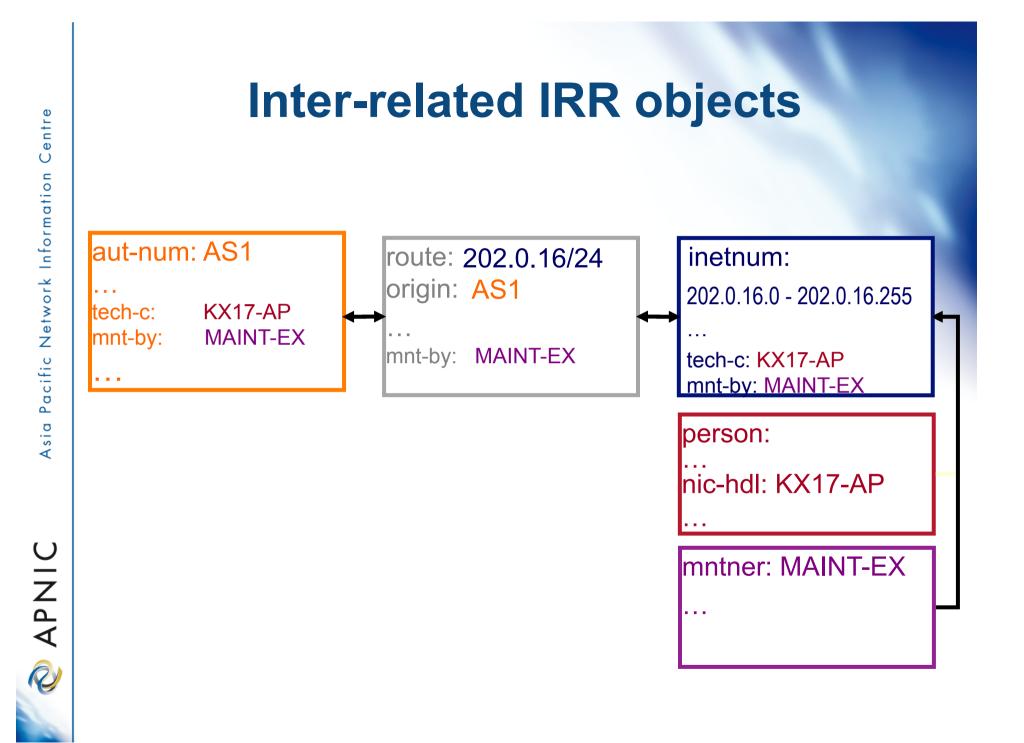
R

routing information

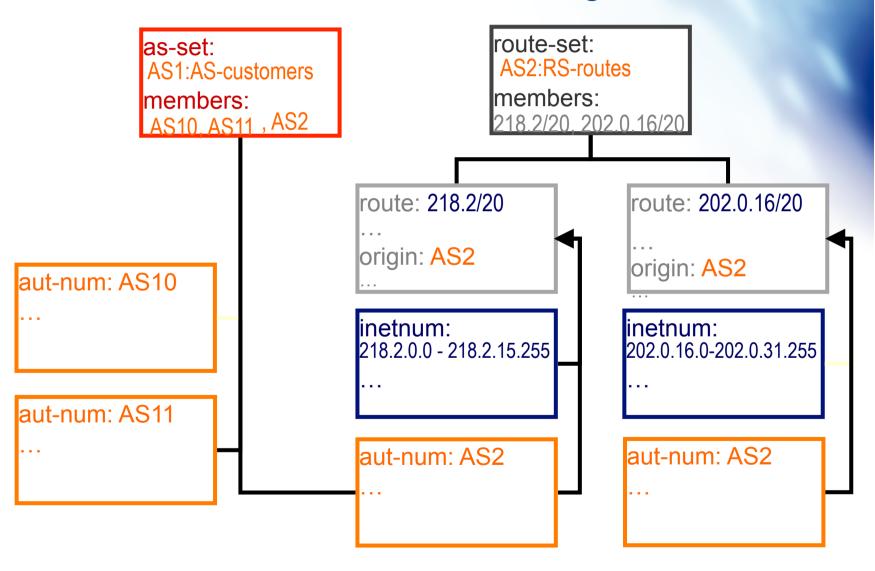
RPSL

- Routing Policy Specification Language
 - Object oriented language
 - Based on RIPE-181
 - Structured whois objects
- Higher level of abstraction than access lists
- Describes things interesting to routing policy:
 - Routes, AS Numbers ...
 - Relationships between BGP peers
 - Management responsibility
- Relevant RFCs
 - Routing Policy Specification Language
 - Routing Policy System Security
 - Using RPSL in Practice

🔌 APNIC


IRR objects

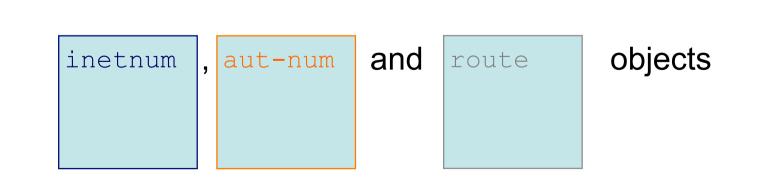
- route
 - Specifies interAS routes
- aut-num
 - Represents an AS. Used to describe external routing policy
- inet-rtr
 - Represents a router
- peering-set
 - Defines a set of peerings


- route-set
 - Defines a set of routes
- as-set
 - Defines a set of **aut-num** objects
- rtr-set
 - Defines a set of routers
- filter-set
 - Defines a set of routes that are matched by its filter

www.apnic.net/db/ref/db-objects.html

🔌 APNIC

Inter-related IRR objects

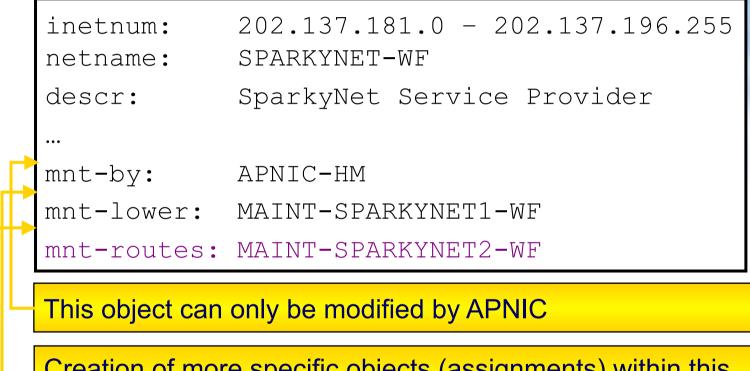

APNIC

Hierarchical authorisation

mnt-routes

- authenticates *creation* of route objects
 - creation of route objects must pass authentication of mntner referenced in the mnt-routes attribute

– Format:



• mnt-routes: <mntner>

🔌 APNIC

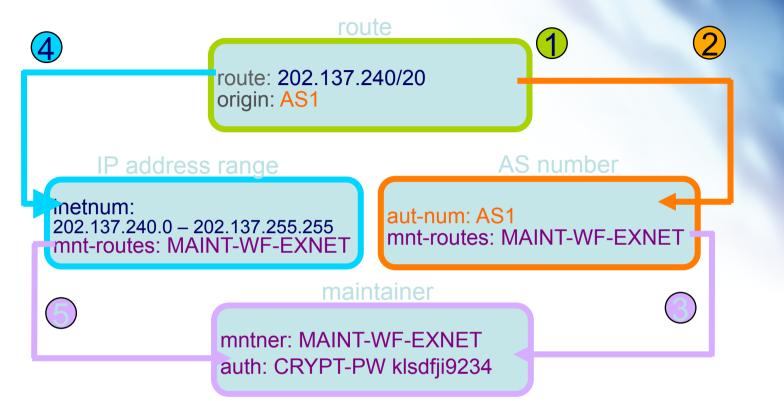
ln:

Authorisation mechanism

Creation of more specific objects (assignments) within this range has to pass the authentication of MAINT-SPARKYNET

Creation of route objects matching/within this range has to pass the authentication of MAINT-SPARKYNET-WF

Creating route objects


- Multiple authentication checks:
 - Originating ASN
 - mntner in the mnt-routes is checked
 - If no mnt-routes, mnt-lower is checked
 - If no mnt-lower, mnt-by is checked
 - AND the address space
 - Exact match & less specific route
 - mnt-routes etc
 - Exact match & less specific inetnum
 - mnt-routes etc
 - AND the route object mntner itself
 - The mntner in the mnt-by attribute

2

Creating route objects

- 1. Create route object and submit to APNIC RR database
- 2. DB checks aut-num obj corresponding to the ASN in route obj
- 3. Route obj creation must pass auth of mntner specified in aut-num *mnt-routes* attribute.
- 4. DB checks inetnum obj matching/encompassing IP range in route obj
- 5. Route obj creation must pass auth of mntner specified in inetnum *mnt-routes* attribute.

Using the Routing Registry

Overview of the IRRToolSet

IRRToolSet

- Set of tools developed for using the Internet Routing Registry (IRR)
- Work with Internet routing policies
 - These policies are stored in IRR in the Routing Policy Specification Language (RPSL)
- The goal of the IRRToolSet is to make routing information more convenient and useful for network engineers
 - Tools for automated router configuration,
 - Routing policy analysis
 - On-going maintenance etc.

IRRToolSet

- History
 - Originated at the USC Information Sciences Institute during 1997-2001 as the Routing Arbiter ToolSet (RAToolSet) project
 - Later migrated to RIPE NCC in order to continue its development and support (RAToolSet was later changed to IRRToolSet)
 - RIPE NCC later transferred maintenance of the tool set to ISC, who began accepting code from the community and providing code maintenance

IRRToolSet

- Now maintained by ISC:
 - http://irrtoolset.isc.org
 - Download: <u>ftp://ftp.isc.org/isc/IRRToolSet/</u>
 - Installation needs: lex, yacc and C++ compiler

Use of RPSL - RtConfig

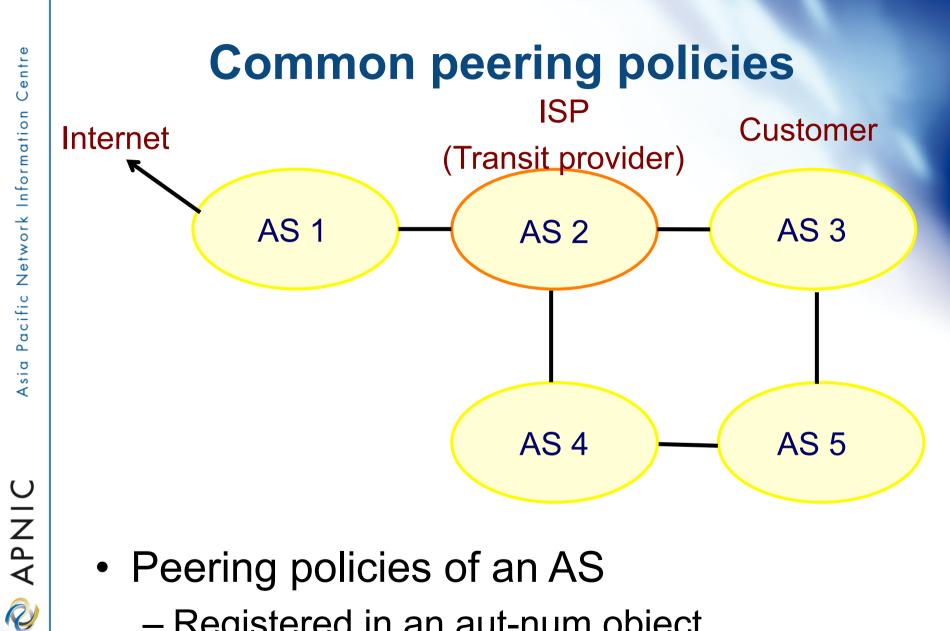
- RtConfig v4
 - part of IRRToolSet
- Reads policy from IRR (aut-num, route & -set objects) and generates router configuration
 - vendor specific:
 - Cisco, Bay's BCC, Juniper's Junos and Gated/RSd
 - Creates route-map and AS path filters
 - Can also create ingress / egress filters
 - (documentation says Cisco only)

Why use IRR and RtConfig?

- Benefits of RtConfig
 - Avoid filter errors (typos)
 - Expertise encoded in the tools that generate the policy rather than engineer configuring peering session
 - Filters consistent with documented policy
 - (need to get policy correct though)

Using RPSL in practice

Overview


- Review examples of routing policies expression
 - Peering policies
 - Filtering policies
 - Backup connection
 - Multihoming policies

RPSL - review

- Purpose of RPSL
 - Allows specification of your routing configuration in the public IRR
 - Allows you to check "Consistency" of policies and announcements
 - Gives opportunities to consider the policies and configuration of others

Peering policies of an AS

Centre

Network Information

acific

۵Ľ

- Registered in an aut-num object

Common peering policies

 Policy for AS3 in the AS2 aut-num object

aut-num:	AS2
as-name:	SAMPLE-NET
dsescr:	Sample AS
import:	from AS1 accept ANY
import:	from AS3 accept <^AS3+\$>
export:	to AS3 announce ANY
export:	to AS1 announce AS2 AS3
admin-c:	CW89-AP
tech-c:	CW89-AP
mtn-by:	MAINT-SAMPLE-AP
changed:	sample@sample.net

ISP customer – transit provider policies

 Policy for AS3 and AS4 in the AS2 autnum object

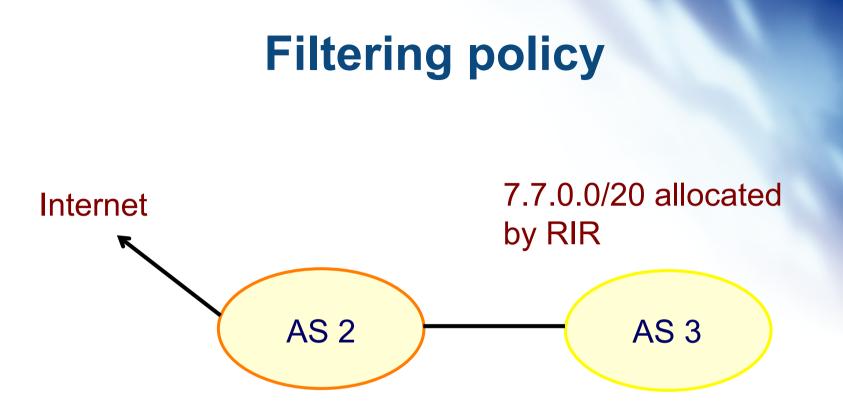
aut-num:	AS2
import:	from AS1 accept ANY
import:	from AS3 accept <^AS3+\$>
import:	from AS4 accept <^AS4+\$>
export:	to AS3 announce ANY
export:	to AS4 announce ANY
export:	to AS1 announce AS2 AS3 AS4

AS-set object

• Describe the customers of AS2

as-set:	AS2:AS-CUSTOMERS
members:	AS3 AS4
changed:	sample@sample.net
source:	APNIC

Aut-num object referring as-set object


aut-num:	AS2
import:	from AS1 accept ANY
import:	from AS2:AS-CUSTOMERS accept <^AS2:AS-CUSTOMERS+\$>
export:	to AS2:AS-CUSTOMERS announce ANY
export:	to AS1 announce AS2 AS2:AS- CUSTOMERS
aut-num:	AS1
import:	from AS2 accept <^AS2+AS2:AS- CUSTOMERS+\$>
export:	

Express filtering policy

- To limit the routes one accepts from a peer
 - To prevent the improper use of unassigned address space
 - To prevent malicious use of another organisation's address space

AS3 wants to announce part or all of 7.7.0.0/20 on the global Internet.

AS2 wants to be certain that it only accepts announcements from AS3 for address space that has been properly allocated to AS3.

Aut-num object with filtering policy

aut-num: AS2 import: from AS3 accept { 7.7.0.0/20^20-24 }

For an ISP with a growing or changing customer base, this mechanism will not scale well.

Route-set object can be used.

Route-set

route-set: AS2:RS-ROUTES:AS3

members: 7.7.0.0/20^20-24

changed: <u>sample@sample.net</u>

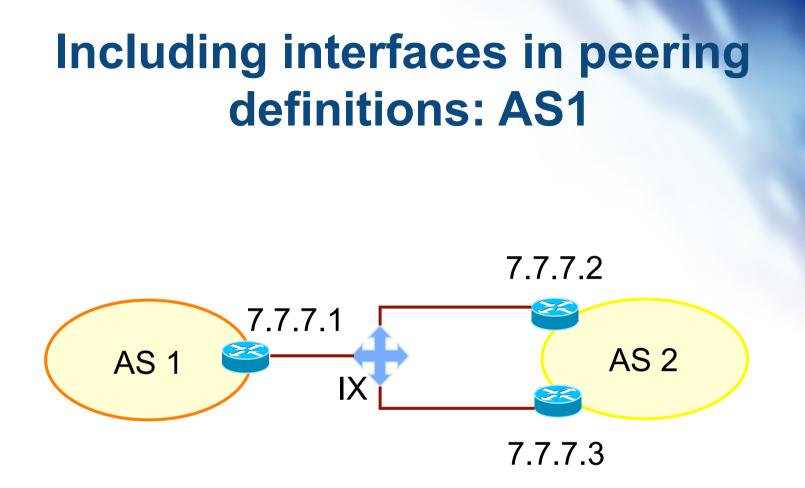
source: APNIC

Specifies the set of routes that will be accepted from a given customer

Set names are constructed hierarchically: AS2 : RS-ROUTES : AS3 indicates whose sets indicates peer AS these are

APNIC

R


Filter configuration using route-set – AS2

- import: from AS1 accept ANY
- import: from AS3 accept AS2:RS-ROUTES.AS3
- import: from AS4 accept AS2:RS-ROUTES:AS4
- export: to AS2:AS-CUSTOMERS announce ANY
- export: to AS1 announce AS2 AS2:AS-CUSTOMERS

RPSL allows the peer's AS number to be replaced by the keyword PeerAS

📎 APNIC

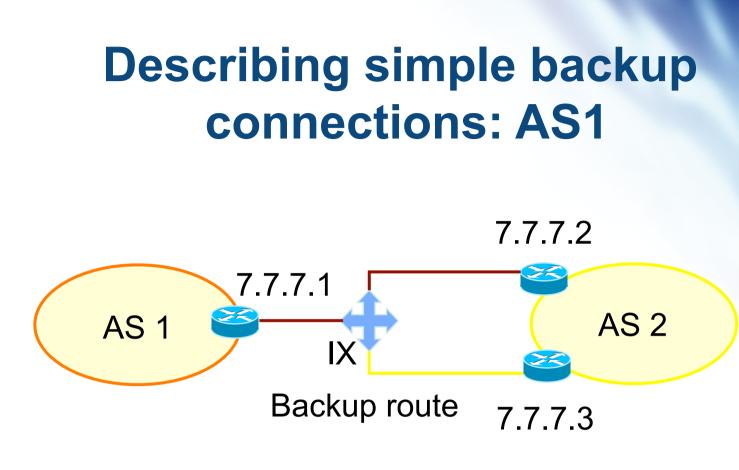
import: from AS2:AS-CUSTOMERS accept AS2:RS-ROUTES:PeerAS

APNIC

How to define AS1's routing policy by specifying its boundary router?

Including interfaces in peering definitions: AS1 (cont.)

aut-num: AS1 import: from AS2 at 7.7.7.1 accept <^AS2+\$>


AS1 may want to choose to accept:

- only those announcements from router 7.7.7.2
- discard those announcements from router 7.7.7.3

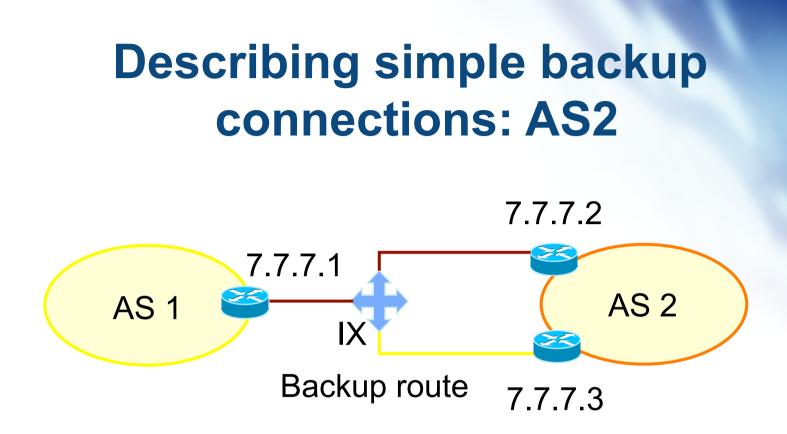
aut-num: AS1

import: from AS2 7.7.7.2 at 7.7.7.1 accept <^AS2+\$>

How to define AS1's routing policy of its backup route?

Use preference

Describing simple backup connections: AS1 (cont.)


aut-num: AS1

import: from AS2 7.7.7.2 at 7.7.7.1 action pref=10; from AS2 7.7.7.3 at 7.7.7.1 action pref=20; accept <^AS2+\$>

Use of pref

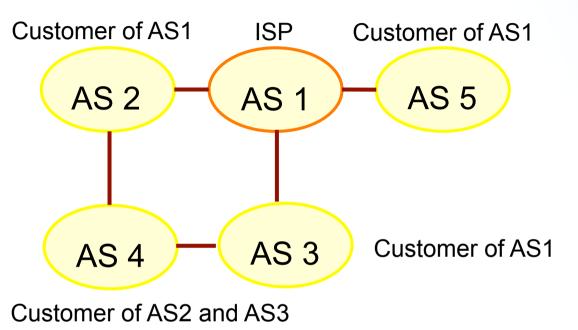
- pref is opposite to local-pref
- Smaller values are preferred over larger values

How to define AS2's routing policy of AS1's backup route?

multi exit discriminator metric (med) can be used

Describing simple backup connections: AS2 (cont.)

aut-num: AS2


export: to AS1 7.7.7.1 at 7.7.7.2 action med=10; to AS1 7.7.7.1 at 7.7.7.3 action med=20; announce <^AS2+\$>

Use of med

Suitable for load balancing including backups

Multihome routing policy

AS1's base policy

- Only accepts routes from customers that are originated by the customer
- or by the customer's customers

📎 APNIC

Multihome routing policies (cont.)

aut-num: AS1

- import: from AS2 accept (AS2 or AS4) AND
 <^AS2+AS4*\$>
- import: from AS3 accept (AS3 or AS4) AND <pr

import: from AS5 accept AS5 AND <^AS5+\$>

🔌 APNIC

Questions?

Thank you!