IP Network Architecture

Lessons learned over time... <u>kurtis@kurtis.se</u> <u>woody@pch.net</u>

Agenda

• IPv4

- Network topology
- Addresses and numbers
- Routing
- Services
- Security

Agenda cont.

- Network topology
- Addresses and numbers
- Services
- Security

Who's this Kurtis anyway?

- I built 3 ISPs from scratch
- Used to be Director of Network architecture at KPNQwest, a Tier-1 provider in Europe
- Today freelance consultant working as managing director for Netnod/ Autonomica that operates the Swedish IXP and i.root-servers.net among other things
- Member of the Internet Architecture Board
- Member of the IETF Administrative Oversight Committee
- Chairman of the Swedish Operators Forum
- Working group (co-) chair of IETF shim6, multi6 and v6ops, RIPE NCC Services WG

Who's this Bill anyway?

- He likes to peer...
- Runs PCH...
- Oh, and he has also started an ISP and built a few networks...
- And he *claims* to have a better digital camera...

Network topology

Network topology

- Factors driving network topology
 - Geography
 - Cost of capacity
 - Cost of hardware
 - Services
 - Complexity of design and clue-level of available workforce

Network Topology

Your most useful tools are:

- Documentation
 - Contract times, prices, cancellation penalties, network layout
 - Important that you know that all circuits are in use, otherwise cancel
 - Use tools for network maps
 - Visio, OmniGraffle etc

Network Topology

- Link monitoring
 - Knowing your capacity usage is critical for planning
 - Trend analysis combined with sales forecasts and sales pipelines are the inputs to your capacity planning process
 - You want your upgrades delivered "just in time"
 - Use tools like RRD or MRTG for graphing usage

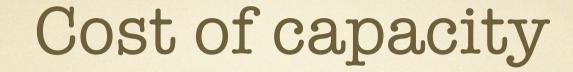
Geography

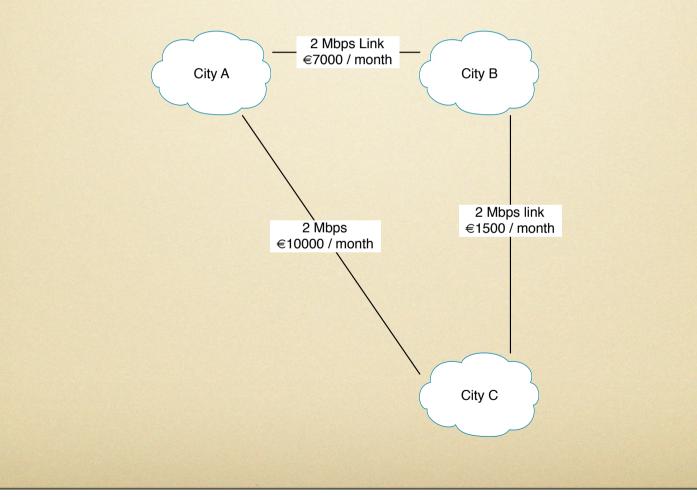
- Prioritise service delivery by population density, or are there regulatory demands for "Universal Service?"
- Keep local traffic local
 - Capacity might be cheaper on shorter distances
 - Long distances will impact TCP throughput with standard window size. Might be problematic as traffic tends to get more national (<u>http://</u> <u>proj.sunet.se/lsr2</u>)
- Customer base spread will impact capacity planning

Geography

- Geography dictates backbone link options:
 - Mountainous terrain requires many microwave hops to traverse
 - Running fiber may be very expensive, unless it can be hung on existing long-haul power lines
 - Land-locked countries don't have inexpensive international fiber options
 - Satellite is high-latency, and offers no local-traffic benefit

Geography

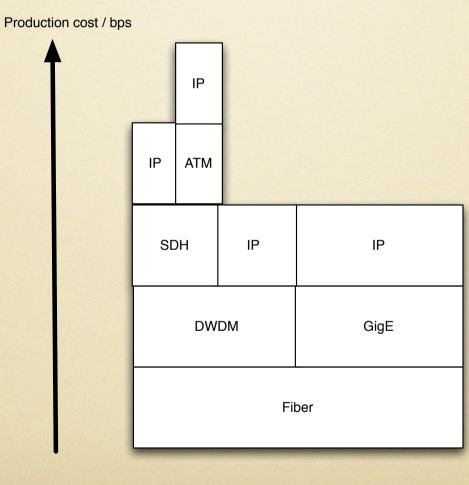

- Geography can also dictate local-loop options:
 - Mountain valleys are well-suited to point-tomultipoint wireless, because antenna locations are obvious and have good LoS.
 - However, wireline will always offer more capacity, and valleys tend to concentrate user populations into small dense areas.


Cost of capacity

- In more complex topologies, always make sure you have enough backup bandwidth
 - For example in a ring, make sure that if one segment fails you can send traffic the other way around
- "Quality of Service"
 - You can't sell capacity you don't have
 - QoS can't transmit packets, it can only *drop* packets. Whose packets get dropped, and how do you retain their business?
 - QoS works on the local loop, but never in the backbone

Cost of capacity

- Adding distance to packet path might bring price of capacity down
- "To protect or not protect"?
 - Circuits that are protected on the transmission level are more expensive
 - It's almost always cheaper to get more unprotected circuits (if you can) than a few protected
 - Build redundancy at layer 3, IP routing

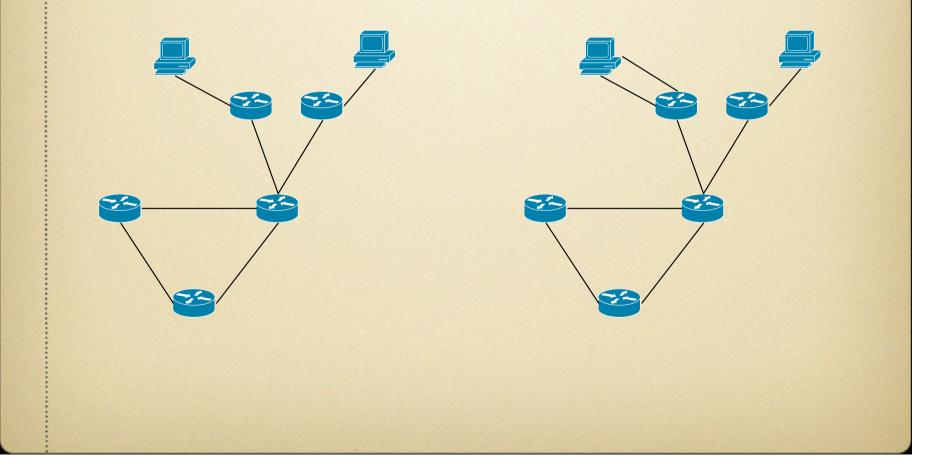

Cost of capacity

- Build or back-haul?
 - You normally have the option to either build out your POP on location, or back-haul the customer connections to a central location
 - Back-haul gives you two options
 - Do aggregation yourself
 - Buy aggregated back-haul

Wireless

- Wireless is local-loop and not core infrastructure
 - Wireless is hard to debug and is a shared medium
- Use wireless temporarily to reach new customers
- Migrate to "land-line" infrastructure

Cost of hardware


Cost of hardware

- Your topology will be reflected in your cost for hardware (CAPEX)
 - Needed number of interfaces, types, queuing technology etc.
- But you can also save on your operational expenses (staff etc) with a properly engineered network topology

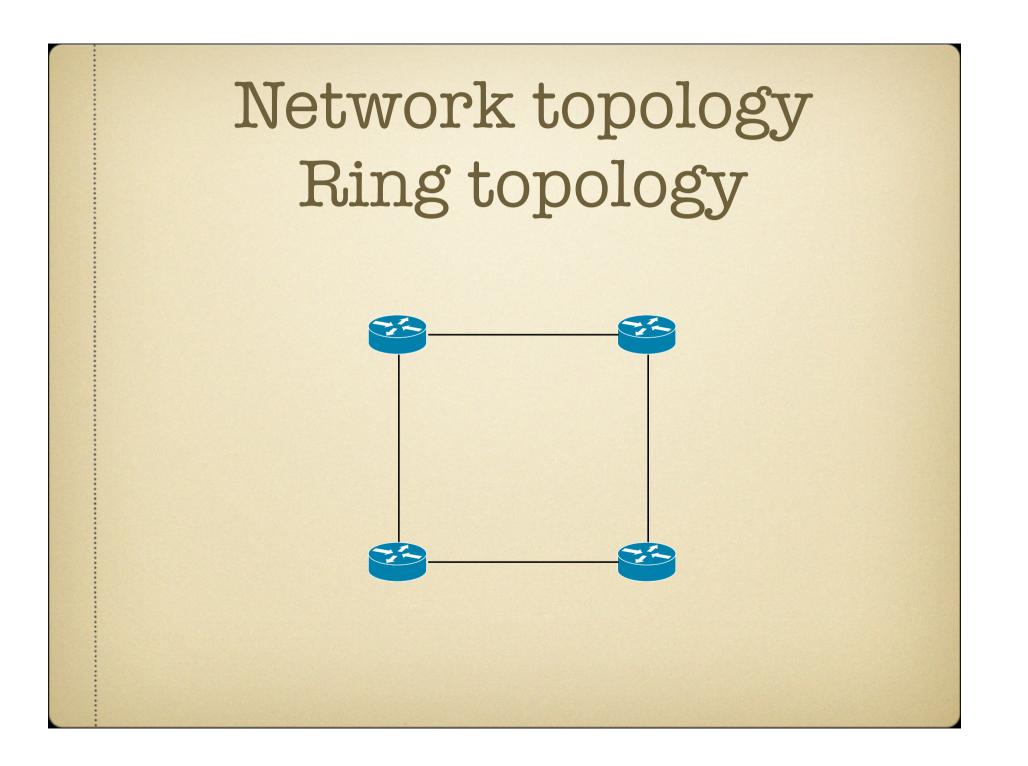
Cost of hardware

- Increased network redundancy in your core often means that you
 - Have more time to troubleshoot at failure times
 - Less customer down-time
 - Perhaps do not need 24x7 staff acting on the fault
 - Can wait until day shift comes for example
- Can also allow you to save on OPEX by having cheaper support contracts

Network topologies Hub-and-spoke

Network Topology Hub-and-spoke

• Pros

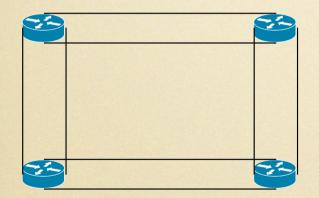

- Capacity upgrades to a POP is easy
- Routing will be easy
- Natural evolution
- Cons
 - No redundancy out to the POPs

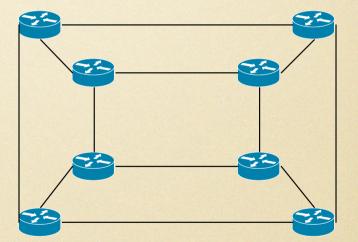
Network topology Star topology

Network topology Star topology

• Pros

- Central management
- Easy capacity planning
- Cons
 - Central point of failure
 - Inefficient routing between leaf locations




Network topology Ring topology

• Pros

- Looks cool in diagrams
- *Can* improve redundancy
- Cons
 - Never actually works very well in practice
 - Capacity planning so you are sure to handle failure modes becomes much harder

Network topology Dual-ring topology

Network topology Dual-ring topology

• Pros

- Very tolerant to faults
- Cons
 - Most often more complex than worthwhile
 - Routing complexity
 - Capacity planning is even more complex

- Address planning
 - Group blocks of addresses to customer locations
 - Will make IGP aggregation easier if needed
 - But the IGP should really only carry infrastructure addresses...(see Philip's excellent tutorial)

- Apply for your own address block from your RIR/NIR
 - Migrating customers away from upstream address space in the future is a nightmare
- Register sub-allocations with your RIR/NIR
 - Will help others tracing abuse issues
 - Could be a problem with privacy laws
- Use "role" handles
 - Yu do not want to have to update all your RIR objects when one of your staff quits

- Use "role" addresses
 - Same reason as above
 - You should also have a role address to make sure that mails to contacts for address blocks will always be answered, for example for abuse
- Register an abuse contact!
- Register route objects
 - Others build filters for their incoming routes based on what is registered
 - You should do that as well!
 - Tools like IRRToolset

- Keep customer records
 - Even for historic data
 - Will help for example in legal investigations
- Keep your records up-to-date

Routing

Routing

- Most of what you need to know is in Philip Smith's excellent tutorials
- Do use dynamic routing. Even in small networks it reduces chance of pilot error
- Run BGP to your upstream
- Do not exchange IGP routes with your customers!

Routing

- Use loopbacks for iBGP
- Filter routes to peers
- Peer as much as possible!
 - Most providers benefit from peering freely
 - Implement the configuration guidelines for peering in Philip Smith's tutorials
 - It will save you money on your transit bill!
 - Take IX locations into account when planning network topology

Routing

- Do not run the same IGP with customer premises equipment as in your backbone
- You can get better convergence and performance by trimming the routing protocols timers
 - But be sure you know what you're doing!!!
 - If values do not match no adjacencies will form

- Security
 - Offer basic filtering capabilities
- Mail
 - Do not run an open mail-server!!!
 - Look at grey listing
 - It does not work for everyone
 - Automatic spam filtering (running spamassassin for example) might be an idea

• DNS

- Offer DNS services for your customers domains
- Use two redundant slave-servers that are not on the same subnetwork
 - Might be worth swapping favours with your competitors
 - You will all gain from stability
- Make sure your resolvers are only accessible by your customers

- AAA
 - Use an authentication database for your users and logins
 - RADIUS, Kerberos, TACACS+ etc
 - Also use it to authenticate logins on your servers and routers
 - Log all access and parse for anomalies
- Database backends
 - Use a database backend to keep track of users and their permissions
 - Can be integrated with all services, SMTP AUTH, IMAP, router logins, dial-up, Wlan

Security

Security

- Most of this covered by Merike, Gaurab and Vicky
- Basic security can be divided into
 - Protecting your customers from others
 - Protecting your own infrastructure
 - Protecting the Internet from your customers

Security Customer protection

- Customer protection
 - Offer customers some sort of basic firewalling, like a standard template ACL for traffic to the customer
 - That for example do not allow Windows filesharing, X-Windows, NFS, etc packets into the customer network
 - Offer SSL transport for SMTP and IMAP/POP

Customer Protection

- If you wonder why you should provide customers with secure login, I have the passwords of the following accounts in 24h
 - POP: adminc, registry, merike, aslam
 - SNMP: public
 - And a few web-mail accounts

Customer protection

```
! Customer Incoming ACL
!------
!
! Customer : Kurtis
! Customer Network: 194.15.141.0/24
! Customer Network: 194.15.141.16/30
!
access-list 120 permit ip 194.15.141.64 0.0.0.15 any
access-list 120 permit ip 194.15.141.16 0.0.0.3 any
access-list 120 deny ip any any log
access-list 121 deny ip 194.15.141.64 0.0.0.15 any log
```

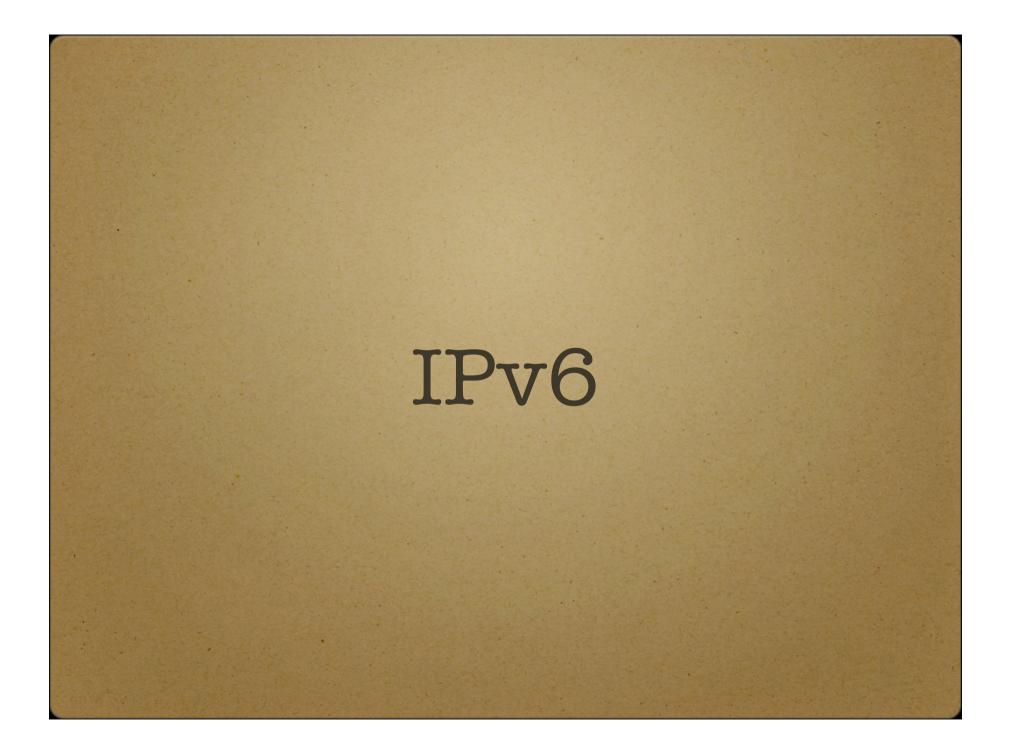
Customer protection

! Customer Incoming ACL

! Customer : Kurtis ! Customer Network: 194.15.141.0/24 ! Customer Network: 194.15.141.16/30

access-list 121 deny ip 194.15.141.64 0.0.0.15 any log access-list 121 permit icmp any any echo access-list 121 permit icmp any any echo-reply access-list 121 permit icmp any any administratively-prohibited access-list 121 permit icmp any any unreachable access-list 121 permit icmp any any parameter-problem access-list 121 permit icmp any any packet-too-big access-list 121 permit icmp any any time-exceeded access-list 121 permit icmp any any source-quench access-list 121 permit tcp any any established access-list 121 permit tcp any eq ftp-data any qt 1023 access-list 121 permit udp any any at 32768 access-list 121 permit tcp any any eq domain access-list 121 permit udp any any eq domain access-list 121 permit udp any eq domain any qt 1023 access-list 121 permit ip any 224.0.0.0 0.255.255.255 access-list 121 permit pim any any access-list 121 deny ip any any log-input

Infrastructure protection


- Only allow access to your core routers from networks that your NOC uses
- Only use ssh to access your routers
 - If not supported use jump-hosts that you ssh to
 - Jump host is a trusted secured internal host that can telnet to your routers
- On CPE routers only allow access from the customer network and your own office networks
 - But restrict access methods to telnet or ssh

Protecting the Internet

- Filter packets coming in from your customers to make sure they can not send spoofed packets
- Filter your outgoing routes
- Filter incoming routes
 - Or As-paths
- Filter out bogons
- Alternatively run RPF

Security Protecting the Internet

- Run netflow on your routers
 - Collect data and analyze it
 - Will help you trace malicious traffic originating inside your network
 - Can also be used for troubleshooting and network planning
 - Use for example flow-tools or cflowd

IPv6

- Some general remarks
 - If you haven't started playing with IPv6 yet, you should
 - Customer demand is small but there are a lot of developments and it's gaining popularity
 - Launching IPv6 is a good way to improve your knowledge of your IPv4 network
 - Remember: IPv6 is just 96 more bits!

Network Topology

Network topology

- Remember, IPv6 is just 96 more bits!
- Your long-term topology doesn't need to be any different than for IPv4
- To avoid routing complexity (or error), the IPv4 and IPv6 topology should match where you have IPv6 services

Transition

- How do I get from an IPv4 network to an IPv6 network?
 - Transition mechanisms!!!
- You have
 - Customer is IPv6 enabled but not the ISP
 - The ISP has some IPv6 connectivity but not to the PE, and the customer is IPv6 enabled
 - Support for IPv6 at all of the ISP network as well as the customer

Transition

- The last bullet is the easiest, dual-stack
 - Simply enable both IPv4 and IPv6
- In the case the end-user supports IPv6 but the ISP doesn't or the ISP just supports it partly some form of tunnelling solution is required
 - Static or dynamic tunnels such as GRE
 - Tunnel solutions such as
 - Teredo
 - 6to4

Addresses and numbers

Obtaining IPv6 addresses

- RIR allocation policies are more or less the same
 - Be a LIR, plan to allocate 200 blocks within 2 years, and you will get a /32
- If you are an LIR you should get your allocation and play with it
 - Take the opportunity and talk to the APNIC hostmaster center while you are here!

Addressing IPv6 networks

- Customers / Customer sites are allocated /48s
- Each network / LAN is assigned a /64
- LIRs can be assigned a larger block than a /32 if they can show the need
 - Based on the HD ratio
 - Hardly likely that anyone would need it though

Addressing IPv6 networks

- All networks, even point-to-point links are supposed to have / 64 blocks
- The remaining 64-bits are EUI64 coded
 - Either hardcoded (unlikely)
 - Or calculated using prefix advertised with "stateless address autoconfiguration"
 - Or calculated using RFC3041 to protect privacy

Addressing end-users

- Current policy means that :
 - There is no PI address space
 - No other way for end-uses to get addresses except through their upstream provider
- End-users that really needs PI have not went away
- Reasoning behind current policy is to protect against routing table growth
- Work on solving part of the problem is done in the IETF shim6 WG

Routing

Routing and IPv6

- The theory is exactly the same
 - Longest prefix match decides on the forwarding path
- There are some pitfalls with using IS-IS
 - IS-IS does not use IP for transport so reachability information might be passed although the topology does not match

Routing and IPv6

• OSPF

• IPv6 support added as OSPFv3

• Works per interface, also means changes in configurations

• IS-IS

• Two new TLVs, interface and reachability

Routing and IPv6

- In BGP IPv6 information is distributed using BPG Multiprotocol support
- Otherwise more or less the same
 - Remember that router_id is a 32-bit value
- Not BGP specific but multihoming might be more challenging

Multihoming in IPv6

- AS+PI
 - Get an AS
 - Get PI space
 - Advertise and use BGP
- More specific PA
 - Advertise the more specific route from the ISP

Multihoming in IPv6

- If customer network does not qualify for a /32 allocation from RIR/NIR
 - Use the second model on previous page
 - Use two PA blocks with two addresses on each server
 - Can create problems when one upstream fails

IPv6 Services

- Most operating systems and server software support IPv6 today
- Enabling it is normally is as easy as just configuring it
 - Might require a recompile on some systems
- You will need to tell the world that your hosts support IPv6
 - Insert AAAA records into your DNS zone

IPv6 DNS entry

• Example DNS entry for a web-server

WWW

Α

AAAA

195.43.225.69 2001:670:87:3001::6

Security

Security

• MOST IMPORTANT!!

- ACLs that you have written for IPv4 are... well... written for *IPv4*. Make sure you have *IPv6* ACLs as well!
- Similarly if you use transition mechanisms
 - Watch out for tunnels through your filters and firewalls
 - Watch out for packet spoofing

Summary

Summary

- Avoid any form of complexity
 - Use "Occam's razor" liberally
- Most of the problems or choices you will face have already been solved by someone else
 - There are plenty of helpful people out there on mailinglist like SANOG