
Tutorial on Network
Operations Practices �

Steve Gibbard
http://www.stevegibbard.com

Introduction �

 What are we covering?
 How to maintain your network.

 What to do when it breaks.
 Manage changes.
 Keep your network from breaking.
 Documentation.
 External Communication.

 We’re not covering specific router or systems
configurations.
 Lots of other tutorials and workshops cover those.

 Mostly, good operational practices mean resisting
the urge to tinker.

Why is this important? �
 Why are good

operational practices
important?
 They keep your network

running smoothly, which
is good for your
customers.

 They keep your life from
being interrupted, which
is good for you.

When the network breaks �

When your network breaks �
 You need to restore

service now.
 Your customers expect it.
 Customers will claim to

be losing millions of
dollars an hour.

 Follow your procedures.
 Don’t panic.
 You don’t need a

permanent fix right
away.

Prioritization�

 What services do you care most about?
 What sorts of customer requests get high

priority?
 Does your night shift NOC person know that?
 Separate request-types into different priority

levels.
 Document the priority levels.
 Document your procedures for different priorities.

Example priority system�

 Priority 1: Problem affecting more than ten
customers.
 Wake up the on-call person.
 On-call person should respond within 30 minutes.

 Priority 2: Problem affecting less than ten
customers.
 Don’t page on-call.
 Fix the problem on the business day.

 Priority 3: Customer change requests.
 Don’t bother anybody right away.
 Change within three business days.

Paging/Escalation �

 What happens when there’s an alert?
 Do you have a NOC with judgment, or an auto-

pager?
 Can NOC fix it?
 Do they have to page somebody else?
 If paged, do you fix it yourself or talk NOC through

fixing?
 Generating too many alerts causes them to

get ignored.
 Getting woken up about stuff that doesn’t

matter is bad.

Don’t panic�
 It’s the middle of the

night. You’re tired.
 It’s tempting to start

changing things.
 You’ll feel like you’re

doing something.
 Don’t!

 A leading cause of
network outages is
network engineers.
 If you try to fix a problem

before you understand it,
you’ll probably make it
worse.

What can you do? �

 Don’t try for a permanent fix.
 Find out what’s down.
 Is there redundancy?

 Turn off the broken component. Watch the service
come back up. Go back to sleep.

 Broken non-redundant hardware:
 Will a reboot fix it?
 Replace the broken components with spares.
 Copy your configurations exactly. Don’t introduce

new changes.
 Somebody should be in charge.

What can you do? �

 Recent changes gone wrong:
 Network engineers are a leading cause of

network outages.
 Back out the changes. Restore the old

configurations. Use the back-out
procedure from your change plan.

 Don’t be inventive. Just get things back to
a known-stable configuration.

Mystery problems �

 Mystery problems:
 It was working. We didn’t touch anything. All the

pieces seem ok.
 What are the symptoms? Do they tell you

anything?
 Escalate.
 Involve vendors.
 How badly do you need the misbehaving

components?
 What’s the minimum stable configuration you can

get to?

When you can’t fix it �
 What if you can’t fix it?
 You need to build

something new in a
hurry.

 You can only use
components you
already have.

 Still, spend some time
on design. You’ll get
the time back in the
construction process.

When you can’t fix it �

 The redesign and rebuild approach will
cause you several hours of downtime.

 Any problems with your plan will make it
take longer.

 What you come up with will probably
have to be replaced again soon.

 Sometimes it’s your only option, but be
sure about that before you “dive in.”

Planning �
 So, you turned

something off or
propped something up,
and went back to
sleep…

 Now it’s daytime. It’s
time for a real fix.

 Your network is running.
It’s not an emergency.

 Your interim
configuration is
probably unstable.

It’s not an emergency�

 Take time to understand the problem and its
cause.

 Figure out how you’re going to put the
network back together.
 Try to avoid major changes. You had a working

configuration before.
 Can you restore the original configuration.

 Use your change management process.
 Does your fix need off-line testing?
 Will it cause downtime?
 What if it doesn’t work?

Failure analysis�

 You’ve had a bad outage, and can’t afford
another one.

 You’re having the same outage over and over
again.

 Find out why.
 Does the same component break repeatedly?
 Are there problems with the network architecture?
 Is it a mystery?

Mystery failures �

 Collect what information you can.
 What does the network look like when it’s broken?
 Is there other data that would point to a cause?
 Does it happen at the same time every day?

 Problems you can see are easier to solve.
 Is there log data?
 What else happened at the same time?
 What could cause that sort of issue? Can

you test hypotheses?
 Don’t be afraid to ask for help.

Mystery failure stories �

 My stories.
 A BGP peering session was resetting daily.

 The peer was threatening to turn off peering.
 Our configuration was identical to our working

configurations.
 The peer said their configuration was known-working too.
 The hold time was shorter than on other sessions.
 Was the peering switch freezing for long enough to

expire the hold time?
 What else happened at that time?

 Audience stories.

Managing changes �

Managing changes �
 Sometimes you have to

make changes.
 Routine changes are

changes you make
regularly.

 Non-routine changes are
special cases. These are
“Real changes.”

 Don’t make changes
when you don’t have to.

Geeks like to take stuff apart �

 Geeks like to take stuff apart.
 Taking your network apart and putting it back

together is a really good way to learn how your
network works.

 Unfortunately, it’s not good for your network.
 Your job is to to operate a stable network.

 Avoid doing things “just because it would be cool.”
 Plan and think through network changes, network

architecture, etc.

Routine changes �

 Document procedures and follow them.
 You know what worked last time.
 Don’t make it up as you go along each time.

 Better yet, automate.
 Software will do the same thing every time.

 Delegate routine changes to lower-level staff.
 Spend your time on things that require your skills.

Automation example:
Peering turn-up command: �

Why type:
ssh user@router
enable
<password>
conf t
neighbor 192.168.1.5 remote-as 65454
neighbor 192.168.1.5 peer-group PEER
neighbor 192.168.1.5 description peer.net #12345
end
write
logout

When you could type:
peergen ktm 65454 192.168.1.5 peer.net 12345

Before making non-routine
changes �

 Ask questions:
 Is this change necessary?
 How will you make the change?

 What procedures will you follow?
 What configurations will you paste in?
 How much downtime?
 What resources do you need?
 What might go wrong?

Be pessimistic (or prepared) �

 What will you do if something goes
wrong?
 What do you need to check on?
 What is your back-out plan?

 Have you tested your procedure?
 What assumptions are you making?
 How will you test?
 Have somebody else review the plan.

Scheduling �

 How long a window do you need?
 What will be down during that window?
 When will customers accept downtime?
 Are your resources available?
 Do you have time to get stuck there?
 Will your co-workers be annoyed if you

need their help?

During and after changes�

 Make sure you’re comfortable with your plan.
 Tell your NOC.
 Check on required resources.
 Follow the plan.
 Test when you’re done, and at intervals.
 If the plan doesn’t work:

 Fixing obvious things on the fly can be ok.
 If you can’t figure it out, don’t dig a deeper hole.

Back out.

Dilemma: To act or not to act�
  UPS fails. Goes into bypass mode.
 UPS thought to be fixed.
 Turning UPS on causes explosion, and blows

circuit breaker. Takes large number of
customers offline.

 Utility power restored, but no back-up.
 UPS fixed again.
 Without UPS, risk of utility power failure.
 Cutover to UPS shown to be risky.
 What do you do?

Risk assessment �
 Sometimes, all your

choices are risky.
 Sometimes, you don’t

know what will happen.
 Or, you think you know

what will happen.
 Use judgment. Pick the

option you’re least
uncomfortable with.

 Do cost analysis on
potential failures and
improvements.

 There are known
knowns.These are things
we know that we know.
There are known
unknowns. That is to say,
there are things that we
know we don't know. But
there are also unknown
unknowns. There are
things we don't know we
don't know.

-Donald Rumsfeld

More obvious choices �

 Important network device loses redundant
power supply controller. Chassis needs to be
replaced.

 Until chassis is replaced, a UPS failure would
cause a 15 minute outage. UPS failures are
unlikely, but there’s pressure to replace it
sooner rather than later.

 An immediate replacement would require a
two hour outage.

 Do you replace the device?

Tools �
 Good tools make life

much easier.
 If you’ve got more than

a few routers, manual
changes are a real pain.

 It’s better to make a
change once and have
it happen everywhere.

 Tools don’t have to be
complex. RANCID
clogin/jlogin makes tool
development easy.

#!/bin/sh
UPASS=$1

ENABLEPASS=$2
ROUTERLIST=/usr/local/rancid/tools/

routerlist

for router in `cat $ROUTERLIST`
do
 /usr/local/rancid/bin/clogin -c \

 "conf t\r \
 username user pass $UPASS\r \
 enable secret $ENABLEPASS\r \

 end\r \
 write" \
 $router
done

Documentation�

 When you change something, document it.
 Otherwise, you get woken up when it breaks.
 If you don’t remember the details, you’re in real

trouble.
 Or, you might not work there anymore.

 Stick to standard configurations.
 People will know what to expect.
 You only have to document them once.

 Documentation on your laptop doesn’t help.
Use a wiki, or something.

Keeping your network from
breaking �

Keeping your network from
breaking �

 Architecture: How to design
a stable network.

 Procedures: How to operate
that network.

Architecture �

 Avoid single points of failure.
 Ideally, network failures are self-correcting.
 Otherwise, being able to turn off broken

components is nice.
 The “KISS Principle” says, “Keep it Simple,

Stupid.”
 Scaling: If you’re successful, your network

will need to grow.
 You don’t need to build the whole thing right away,

but don’t make growth require a redesign.

What are the vulnerabilities? �

Redundant network design�

Limits of redundancy�

 Redundancy is a statistical game.
 You can still have bad luck.
 More pieces are good, but diminishing returns hit

quickly.
 Interconnected devices can fail together.
 Redundancy protocols can introduce

complexity and cause problems.
 Some vulnerabilities can take out both sides:

 Software bugs.
 Load-related problems.
 Attacks.

Scaling �

 What is scaling?
 How big does your network need to be now?
 How big might it need to be eventually?
 How will you get from here to there?

 How do you design for scalability?
 Make network out of standard modular “nodes”.
 Don’t make nodes dependent on each other.
 Avoid limiting how many nodes can be connected.
 Use a hierarchy.

Scalable network design�

Somewhat bigger �

After scaling �

Standardization: Templates�
 Standard

configurations make life
much easier.

 You shouldn’t keep
reinventing things.

 Knowing how one
device is configured
should mean knowing
how the others are
configured.

 Changes can be
standardized, too.

interface FastEthernet0/1
 description <exch-name> switch
 ip address <exch-addr>
 no ip proxy-arp
 full-duplex
 no cdp enable
!
interface FastEthernet0/0
 description trunk to switch.<loc-tla>
 no ip address
 no ip proxy-arp
 speed 100
 full-duplex
 no shutdown
!
interface FastEthernet0/0.1
 description <loc-tla> subnet
 encapsulation dot1Q 1 native
 ip address <local-ip> 255.255.255.240

Procedures �

 Think about services, not components.
 Repair components proactively.
 Monitor, but don’t over-monitor.
 Prioritize alerts. Don’t get woken up

when you don’t need to.
 Plan network changes carefully.

 Network engineers are a leading cause of
network outages.

Networks provide services�

 Your network exists to provide services.
 What services do you care about?

 Web? Mail? DNS? Other?
 What components are required to provide

those services?
 Routers? Switches? Servers? Circuits? Power?

 Those components are going to break.
 What happens when they break?

Monitoring �

 Are both sides of redundant pairs
working?

 How are you doing on capacity?
 Circuits, CPU load, memory, disk space.
 Network and server performance.

 Don’t over-monitor.
 Prioritize your alerts.
 I’ll say more about handling alerts later.

Be proactive �

 Do repairs proactively.
 If you see a problem, schedule a time to fix it.
 Use your change management process. Don’t

cause an outage in the process.
 Think about what can go wrong.

 Have plans in place to deal with failures.
 Practice them.

 Forecast capacity. Don’t let network growth
become an emergency.

Auditing �

 Are your configurations standardized?
 Are your redundant pairs really redundant?

 Do your cables go where you think they do?
 Are all your routing protocol sessions up?
 Do you have enough capacity?

 Testing: If you’re confident and brave,
schedule a window and turn components off.
 But make sure you know what you’re doing first.

 Documentation. Can you find information?

Documentation�

 Have information you’ll need before you need
it:
 Network diagrams.
 Service contract numbers.
 Useful phone numbers.
 Circuit IDs and end points.
 Why things were done.

 Where to store documentation:
 Wikis allow for collaborative editing.
 Interface descriptions put information right where you need

it.
 Ticket systems show history (“why was this done this way?”)

Dealing with customers/
peers �

Dealing with customers/
peers �

 Ticket systems
 Track

communications in a
ticket system. Your
co-workers will know
why a customer is
calling.

 Maintenance
announcements
 Let people know

what’s going on.

Ticket systems �

 Gathers customer communications in one
place.

 Sets up an audit trail. You know what was
done, what was said.

 Makes it easy to take over projects started by
other people.

 Maintains “to do” lists.
 “RT” is a good open-source ticket system.

Ticket systems �

Maintenance announcements �

 Tell your customers and peers before causing
outages.
 Avoid surprises.
 Don’t make them waste time troubleshooting.

 Don’t overdo it.
 Sending too many maintenance notices makes

people ignore them.
 Don’t send notices for things people don’t need to

know about.
 Finding the right balance is sometimes tricky.

Sample maintenance notice �
Dear NL-ix customers,

We will be performing maintenance work in the following

datacenter:

 - NIKHEF

This work will be carried out on Wednesday 23 January 2008 starting

at 02:00.

When

The work will be carried out on:

 Wednesday, January 23, 2008 between 02:00 and 06:00 CET, during
 the regular scheduled maintenance window.

A brief outage on the connections to the NIKHEF backbone switch
will be experienced as the switch is reloaded to activate the

current supported Foundry OS release.

Questions? �
Further discussion? �

Steve Gibbard
scg@stevegibbard.com

http://www.stevegibbard.com

