

JUNIPER Networks Routing Workshop

Amit Kumar Das - SE, India & SAARC Anand Verma – Senior SE, India & SAARC

Agenda

Date 11.08.08

Introduction to JUNOS, CLI and basic 17:30 -18:30 configuration

Date 12.08.08

OSPF Protocol overview with hands-on 9:00 -11:00

Tea Break

11:15-13:30 BGP – Protocol overview with hands-on

Lunch Break

MPLS-TE-VPN —Technology overview with 14:30-17:00

hands-on

17:00-18:00 High Availability

Leader in High-Performance Networking

Well
Positioned
for
Growth

Partner and Shareholder Value

Global Presence, Follow-the-Sun Support

Serving Enterprises and Service Providers

Service Providers

Enterprises

DAIMLERCHRYSLER

HITACHI

Inspire the Next

Networking Platform Portfolio

T-series Core Routing Solutions

Highly available and resilient core routers that scale through multi-terabit capacities

M-series Multi-Service Edge Solutions

Combines best-in-class IP/MPLS capabilities w/ unmatched reliability and service richness

E-series Broadband Service Solutions

Carrier class routing platforms for IP-Edge and Broadband Service applications, such as multiplay

MX Carrier Ethernet Solutions

High-Density Carrier Ethernet edge services in a highly scalable and reliable platform

Circuit to Packet Solutions

Provides technology and features to reliably transport circuit based apps across IP networks

Management and Policy Solutions

Provides admin and control of solution portfolio, enabling the rapid service creation and mgt

Security Product Solutions

Enterprise Routing Solutions

Service provider quality routers for the enterprise designed for remote, branch or regional offices

Integrated Firewall/IPSec VPN Solutions

Purpose-built security appliances with WAN & LAN interface flexibility and performance capabilities to protect enterprise and service provider networks

SSL VPN Solutions

Product lines for secure LAN, extranet and intranet access to mobile employees, customers and partners with no client software deployment

Intrusion Detection and Prevention Solutions

Intrusion prevention appliances that help protect networks and critical resources from attacks

Unified Access Control Solutions

Product line consisting of three components that work together to enable a cost-effective, pragmatic solution solving endpoint security as it effects the LAN

Central Policy-based Management Solution

3-tier system providing role-based administration and central control and logging of all FW/VPN solutions

Gartner Magic Quadrants Juniper, a proven leader in all categories

JUNOS and Platforms Training

Modular interface architecture

- Physical Interface cards known as "PIC"s
- PICs plug into Flexible PIC Concentrators ("FPC"s)
- **Advantages:**
 - Mix and match interface media per FPC slot
 - PIC portability (i.e. migration from one platform to another)
 - PIC hot insert/removal

PFE Overview

- FPCs
 - Hardware platform which accepts PICs
- PICs
 - Physical Interface Card
 - Contains physical layer components
- Control board with internet Processor ASIC
 - CFEB M7i/M10i
 - SFM M40e
 - FEB M120
 - SIB M320/T320/T640/TX Matrix

Routing Engine Overview

- JUNOS software resides in flash memory
 - Alternate copy available on hard drive
- Provides routing protocol intelligence to PFE
 - Not directly involved with packet forwarding
- Implements command-line user interface
 - Operations
 - Administration
 - Maintenance
 - Provisioning
- Manages care and feeding of PFE

Interface Names

 Physical interfaces have standard names

Interface Names

 Logical interfaces are used to set up Frame Relay DLCIs or ATM virtual circuits

- Interface number is separate in meaning from the actual DLCI or ATM VC and can be any arbitrary value
- Suggested convention is to keep them the same whenever possible
- Router has two permanent interfaces
 - Out-of-band management interface is called fxp0
 - Internal Routing Engine to PFE connection is called fxp1

Service Built Architecture

Juniper platforms

Forwarding
Plane
Programmable
ASICs

Control
Plane
Scalable,
Modular OS

Services
Plane
Hardware
accelerated

Software / CPU based platforms

- Linear, High performance with features
- Secure DOS attack resistant
- Modular OS Inherently stable

- Performance suffers with features
- DOS attack vulnerable
- Monolithic OS prone to instability

JUNOS Software

- Deployed since early 1998
- Purpose-built for reliability and scalability
- Modular design
 - Failure protection
 - Independent restart
 - Individual daemons
 - Memory protection

JUNOS Architecture

What Makes an OS Carrier Class?

- STABILITY
- SCALABILITY
- SECURITY
- PRECISION
- HIGH AVAILABILITY
- FEATURE RICHNESS
- CONSISTENCY
- PREDICTABILITY
- PROCESS

Stability

- Separation of control and forwarding planes
 - Protects control plane during periods of heavy traffic
 - Protects forwarding plane during times of network instability
- Separate control plane and forwarding plane processors
 - Separation of functions is no good if they are controlled by the same processor
- Modular processes running in protected memory
 - Failure of one process does not affect other processes

- Disciplined control and regression testing of code is fundamental to network survival
 - System failures are highly disruptive
 - System failures are slow to recover
 - System failures tend to cause cascading failures through the network

Scalability

- Scalability in component expansion
 - Wide diversity of interface types in same chassis
 - Memory flexibility to handle network growth
- Scalability in features
 - Wide diversity of available features
 - All currently supported features in one image
 - No "feature specific" packages
- Scalability in protocol capabilities
 - Wide diversity of supported IP protocols

Security

Self protection

- Powerful firewall capability between forwarding and control planes
 - Allows strict specification of what packets are allowed to reach control plane
- Rate limiting between forwarding and control planes
 - Allows rate limitation of packets that must be accepted but that might be exploited for DoS attacks

Network protection

- Protocol security
 - Strong authentication between communicating peers
- Attack prevention/alleviation tools
 - Allows traceback to attack entry points
 - Allows throttling of attack traffic

Precision

- Incorrect route calculations can lead to:
 - Routing loops
 - Black holes
- Carrier-class route calculations must be right every time
- If you don't have precision, you don't have:
 - Stability
 - Scalability
 - Security

High Availability: Minimizing Downtime

- Minimizing downtime from software failures:
 - Intelligently modular software architecture
 - Graceful switchover to backup control plane
 - Graceful switchover to backup forwarding plane
- Minimizing downtime from configuration (human) errors:
 - No "automatic" commits during configuration
 - Strong error checking features
 - Customizable configuration rules (commit scripts)
- Minimizing planned downtime:
 - Uninterrupted switchover of routing protocols
 - In-service software upgrades

Modularity

- Modularity is an engineering tool
 - For creating reliable software
 - By dividing the job into manageable chunks
- Sizing the modules:
 - Large enough to reasonably contain interdependencies
 - Small enough so engineering teams can reasonably understand and manage the code
- Allows same teams to manage same modules release after release
 - No separate "Release A" and "Release B" teams
- Modularity benefits the customer in terms of reliability and performance

Why Is This Interesting?

"The possibility of failures would be much reduced if you consider that changing device configuration causes 60% of downtime due to human error."

--Jeffrey Nudler Senior Analyst *

* http://www.networkworld.com/news/2005/101005-ietf.html

Prevent Configuration Error

JUNOS: offline configuration model

Candidate ← CLI changes

Check-out ← 'commit check'

Committed ← active config

 Versioning, in-line warnings, commit-confirmed, rollback, activate/deactivate

JUNOS Command Line Interface

10,000-Foot View

- Move around statement hierarchy using edit command
 - Like UNIX cd command
- Alter configuration using set command
- Activate configuration using commit command

Enter Configuration Mode

Type configure at the CLI prompt

```
root@lab2> edit
Entering configuration mode
[edit]
root@lab2#
```

Other users in configuration mode

```
root@lab2> edit
Entering configuration mode
Current configuration users:
   diana terminal d0 on since 1999-10-14 07:11:29 UTC,
      idle 00:00:49 [edit protocols ospf]
The configuration has been changed but not committed
[edit]
root@lab2#
```


Move around the Hierarchy

- Configuration statements organized as a tree
 - Similar to UNIX/Windows—style directories

Move around the Hierarchy

 Use the edit command to focus your attention on a particular part of the hierarchy

user@host# edit chassis alarm ethernet
[edit chassis alarm ethernet]

Move around the Hierarchy

- Use the exit command to move back to where you just were
 - exit at the top level exits configuration mode and puts you back into operational mode
 - exit configuration-mode exits no matter where you are
- Use the up command to move up a level
- Use the top command to move to the top of the hierarchy

Overview

Command hierarchy

Log In

- Special treatment for "root" login
 - Can only log in as root from console port
 - Must create additional user with superuser privileges to log in via network ports
 - Be sure to review security implications

Edit Lines

Move the cursor

Ctrl-B Back one character

Ctrl-F Forward one character

Ctrl-A To beginning of line

Ctrl-E To end of line

Delete characters

Delete or

backspace key
Ctrl-D
Delete character before cursor
Delete character under cursor
Delete from cursor to end of line

Ctrl-U Delete all characters

Ctrl-W Delete entire word to left of cursor

Other keys

Ctrl-L Redraw the current line

Ctrl-P Move backwards through command

history

Ctrl-N Move forward through command

history

Configure the Router: Overview

- CLI has separate configuration mode
- You edit a copy of current configuration called the candidate configuration
- Changes you make are visible to other CLI users
 - Changes they make might conflict with your changes
- Changes do not take effect until you commit them
- When committed, candidate configuration becomes active and a new candidate is created

Configure the Router: Overview

Activate a Configuration

Activate configuration changes using the commit command

```
[edit]
user@host# commit
commit complete
[edit]
user@host#
```

- Checks configuration before activating it
- System never commits for you

Activate a Configuration

- Inband configuration has disadvantages
 - Might disrupt connectivity to router
 - Might disrupt inband session
- Avoid disadvantages using commit confirmed command
 - Activates configuration for a few minutes (default is 10 minutes)
 - If configuration is not confirmed, router returns to previous configuration automatically
 - Confirm configuration by issuing a second commit command

Back out Changes

- Use the rollback command to restore one of the last nine previously committed configurations
- rollback or rollback 0 resets the candidate configuration to the currently running configuration, which is the last version committed.
- rollback 1 loads the configuration before that
- and so on

Commit Dual RE

- When commit is entered, the system will only activates the changes in the local RE.
- Use commit sync command to make changes to activates in both RE.

Save Configuration Files

 Current candidate configuration from current hierarchy level and below can be saved to ASCII file using save command

```
[edit]
cli# save filename
[edit]
cli#
```

- File is saved to user's home directory unless full path name is specified
- Filename can be URL or in user@host notation

Load a Configuration File

- Syntax
 - load (replace | merge | override) filename
- Changes candidate configuration only
- You must commit to activate
- Can take input from the terminal
- Use the load command to
 - Override an existing configuration
 - Merge new statements into existing configuration
 - Replace existing statements in current configuration

Command Summary

- Add and modify configuration statements
 - edit, set, rename, and insert commands
- **Display current configuration**
 - show command
- Save, validate, and activate a complete configuration
 - commit command
- Return to previously saved configuration
 - rollback command
- Remove configuration statements
 - delete command
- Display other users configuring router
 - status command

View Log Files

- Additional logging can be turned on on a permodule basis
 - use traceoptions flag keywords
 - specify file name with traceoptions file file-name command
- Example

```
[edit protocols ospf]
cli# set traceoptions flag errors
cli# set traceoptions file ospf-log
```


View Log Files

- System keeps log files in /var/log
 - messages file contains running commentary about system operation
 - Can be tuned to provide minimal to extensive logging
- View with show log file-name
- View in real time with monitor start file-name

Powerup and Powerdown

Powerup

- Connect all cables
- Turn on one power supply
- Turn on second power supply

Powerdown

- Shut down JUNOS routing software
- CLI request system halt command
- Turn off power supplies

Visible Activity at Startup

Craft interface displays:

- Starting Routing Engine
- Starting PFE
- Starting Cards

FPC LEDs

- Blink green while testing
- Become solid green when tests pass

Alarm LEDs light as needed

Boot Sequence

- Hardware controlled
 - Software notifies hardware when boot completes

- Root password
 - Root password not set at factory
 - Must use console to configure root password
- Router and domain name
- Management interface IP address and prefix length
- Default router IP address
- DNS server IP address

Enter configuration mode

```
root@> configure
[edit]
root@#
```

Set root password

Plain text known

```
root@# set system root-authentication
  plain-text-password
```

Pre-encrypted password

```
root@# set system root-authentication
  encrypted-password encrypted-password
```

SSH (secure shell) key

```
root@# set system root-authentication
  ssh-rsa key
```


Set router name

```
[edit]
root@# set system host-name lab2
```

Set router domain name

```
[edit]
root@# set system domain-name juniper.net
```

Commit changes so far

```
[edit]
root@# commit
commit complete
[edit]
root@lab2#
```


Set management Ethernet IP address and prefix

[edit]

root@lab2# set interfaces fxp0 unit 0 family inet address ipaddress/prefix-length

Set default route

[edit]

root@lab2# set system backup-router gateway-address
root@lab2# set routing-options static route default nexthop
gateway-address retain no-readvertise

Set name server address

[edit]

root@lab2# set system name-server ns-address

Full Installation

- Reinstall JUNOS software if storage media fails or is corrupted
- Future major software revisions may require full installation
- Three steps
 - Prepare to reinstall JUNOS software
 - Reinstall JUNOS software
 - Configure JUNOS software

Full Installation: Software Configuration

Log in as root

```
no-name (ttyd0)
login: root
Last login: date on ttyd0
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
The Regents of the University of California. All rights reserved.
---JUNOS 4.0R1 built 2000-02-10 09:29:44 UTC
#
```

Start CLI

```
# cli
root@no-name>
```


Software Update Packages

- JUNOS software updates are contained in four packages
 - jkernel–Operating system
 - jroute–Routing Engine software
 - jpfe—Packet Forwarding Engine software
 - jdocs–On-line documentation
 - jbundle–All four upgrade packages
- Packages can be upgraded individually
- CLI show system software command displays installed packages

Package Naming Convention

Software packages have standard names

```
package-m.nZnumber.tgz
```

- m.n is the major version number
- Z is a single uppercase letter
 - A–Alpha
 - B–Beta
 - R–Release
 - I-Internal
- number is the release number, which might include the build number for that release
- For example

```
jbundle-4.0R1.2.tgz
```


Upgrade Software Packages

- Download current package from software download page at www.juniper.net
- Add new package

```
root@lab2> request system software add <u>new-package-name</u>
Checking available free disk space...11200k available,
6076k suggested.
```

If JTAC requests, reboot router

root@lab2> request system reboot

Back Up Existing Software

- System software and configuration can be backed up to rotating disk
- Best used
 - Before major upgrade to ensure system recovery if necessary
 - When system is known stable
- CLI request system snapshot command

Interface Port Type

- at— ATM over SONET/SDH ports
- e3— E-3 ports
- fe— Fast Ethernet ports
- so— SONET/SDH ports
- t3— DS-3 ports
- ds- Nx64k interfaces
- ge— Gigabit Ethernet ports
- ml- multilink
- Is link services
- sp adaptive services pic
- vt- virtual interface

Configure Interfaces

- Physical properties
 - Clocking
 - Scrambling
 - Frame check sequence (FCS)
 - Maximum transmission unit (MTU)
 - Keepalives
 - Other link characteristics
- Logical properties
 - Protocol family (Internet, ISO, MPLS)
 - Addresses (IP address, ISO NET address)
 - Virtual circuits (VCI/VPI, DLCI)
 - Other characteristics

Configure Interfaces

Standard configuration statement hierarchy

```
interfaces {
   interface-name {
      physical-properties;
      Γ... 7
      unit unit-number {
          logical-properties;
          [...]
```


Configure **Physical Properties**

Configure physical properties of the interface using the set command:

```
set interface so-1/0/3 no-keepalives
```

Or park yourself in the interfaces section of the hierarchy and set many options

```
lab@omaha> configure
[edit]
lab@omaha# edit interfaces so-1/0/3
[edit interfaces so-1/0/3]
lab@omaha# set no-keepalives
lab@omaha# set sonet-options fcs 32
lab@omaha# commit
```


Logical Interface Settings

- Logical settings
 - Protocol family (Internet, ISO, MPLS)
 - Protocol MTU
 - IP address
 - Other protocol options
 - Virtual circuit identifiers (VPI.VCI, DLCI)
 - Other according to-circuit characteristics

Configure Logical Interfaces

- Use the set command to configure a logical interface, using the unit number
- For example

```
set interface so-1/0/3 unit 40 dlci 40
```

Or park yourself at the unit level

```
lab@omaha> configure
[edit]
lab@omaha# edit interfaces so-1/0/3 unit 40
[edit interfaces so-1/0/3 unit 40]
lab@omaha# set dlci 40
lab@omaha# set family inet address 10.0.20.1/24
lab@omaha# commit.
```


Configure Protocol Families

- Each major protocol is called a family
- Internet protocol has TCP, UDP, and ICMP as family members
- Most common protocol families are
 - Internet (inet)
 - International Standards Organization (iso)
 - Traffic engineering (mpls)
 - Multiple families can live on one logical interface

Configure Protocol Families

- Internet protocol family (inet)
- Allows you to set
 - IP address: address A.B.C.D/prefix_length
 - Remote address on point-to-point links: destination A.B.C.D
 - Broadcast address: broadcast A.B.C.D
 - MTU size: mtu bytes
 - ICMP redirect control: no-redirects

Configure Protocol Families

Minimal sample configuration

```
lab@omaha> configure
[edit]
lab@omaha# edit interfaces so-1/0/3
[edit interfaces so-1/0/3]
lab@omaha# set unit 0 family inet address 10.0.20.1/24
lab@omaha# commit
```

Displayed as

```
interfaces {
    so-1/0/3 {
        unit 0 {
            family inet {
                address 10.0.20.1/24;
            }
        }
}
```


Hands-On Session

All user/pw pair is lab/sanogLab.

You can access r52 from Internet by telnet to 218.189.73.130.

To access via fxps, please use the IP 172.27.60.xx after logging in to the r52 platform.

**** Please do not delete apply-groups and group configurations ****

Juniper Out Net.