
Permissions: who can
control what

UNIX/IP Preparation Course
SANOG 16, July 15th 2010

Paro, Bhutan

Goal

Understand the following:
− The Unix security model
− How a program is allowed to run
− Where user and group information is

stored
− Details of file permissions

Users and Groups

Unix understands Users and Groups

A user can belong to several groups

A file can belong to only one user and one
group at a time

A particular user, the superuser “root” has extra
privileges (uid = “0” in /etc/passwd)

Only root can change the ownership of a file

Users and Groups cont.

User information in /etc/passwd

Password info is in /etc/master.passwd

Group information is in /etc/group

/etc/passwd and /etc/group divide data
fields using “:”

/etc/passwd:

auser:*:1000:1000:A. User:/home/user:/usr/local/bin/bash

/etc/group:

users:*:99:auser

A program runs...

 A program may be run by a user, when the
system starts or by another process.

 Before the program can execute the kernel
inspects several things:

• Is the file containing the program accessible to the user or
group of the process that wants to run it?

• Does the file containing the program permit execution by that
user or group (or anybody)?

• In most cases, while executing, a program inherits the
privileges of the user/process who started it.

A program in detail

When we type:

ls -l /usr/bin/top

We'll see:
-r-xr-xr-x 1 root wheel 46424 Nov 21 28 2009 /usr/bin/top

What does all this mean?

-r-xr-xr-x 1 root wheel 46424 Nov 21 2009 /usr/bin/top

---------- --- ------- ------- -------- ------------ -------------
 | | | | | | |
 | | | | | | File Name
 | | | | | |
 | | | | | +--- Modification Time/Date
 | | | | |
 | | | | +------------- Size (in bytes
 | | | |
 | | | +----------------------- Group
 | | |
 | | +-------------------------------- Owner
 | |
 | +-------------------------------------- “link count”
 |
 +-- File Permissions

Group
 The name of the group that has permissions in addition to the file's owner.
Owner
 The name of the user who owns the file.
File Permissions
 A representation of the file's access permissions. The first character is
the type of file. A "-" indicates a regular (ordinary) file. A "d" would
indicate a directory. The second set of three characters represent the read,
write, and execution rights of the file's owner. The next three represent the
rights of the file's group, and the final three represent the rights granted to
everybody else.

(Example modified from http://www.linuxcommand.org/lts0030.php)

Access rights

Files are owned by a user and a group
(ownership)

Files have permissions for the user, the group,
and other

“other” permission is often referred to as “world”

The permissions are Read, Write and Execute
(R, W, X)

The user who owns a file is always allowed to
change its permissions

Some special cases

When looking at the output from “ls -l” in the
first column you might see:

d = directory
- = regular file
l = symbolic link
s = Unix domain socket
p = named pipe
c = character device file
b = block device file

Some special cases cont

In the Owner, Group and other columns you
might see:

s = setuid [when in Owner column]

s = setgid [when in Group column]

t = sticky bit [when at end]

Some References
http://www.tuxfiles.org/linuxhelp/filepermissions.html

http://www.cs.uregina.ca/Links/class-info/330/Linux/linux.html

http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

There are two ways to set permissions when
using the chmod command:

Symbolic mode:
testfile has permissions of -r--r--r--

 U G O*

$ chmod g+x testfile ==> -r--r-xr--

$ chmod u+wx testfile ==> -rwxr-xr--

$ chmod ug-x testfile ==> -rw--r--r--

U=user, G=group, O=other (world)

File permissions

Absolute mode:
We use octal (base eight) values represented like this:
Letter Permission Value

R read 4

W write 2

X execute 1

- none 0

For each column, User, Group or Other you can set values from 0 to
7. Here is what each means:

0= --- 1= --x 2= -w- 3= -wx

4= r-- 5= r-x 6= rw- 7= rwx

File permissions cont.

Numeric mode cont:
Example index.html file with typical permission values:

$ chmod 755 index.html

$ ls -l index.html

-rwxr-xr-x 1 root wheel 0 May 24 06:20 index.html

$ chmod 644 index.html

$ ls -l index.html

-rw-r--r-- 1 root wheel 0 May 24 06:20 index.html

File permissions cont.

Two critical points:

1.The permissions of a directory affect whether
someone can see its contents or add or
remove files in it.

2.The permissions on a file determine what a
user can do to the data in the file.

Example:
If you don't have write permission for a directory, then you can't

delete a file in the directory. If you have write access to the
file you can update the data in the file.

Inherited permissions

To reinforce these concepts let's do some
exercises.

In addition, a very nice reference on using the
chmod command is:

An Introduction to Unix Permissions -- Part Two

By Dru Lavigne

http://www.onlamp.com/pub/a/bsd/2000/09/13/FreeBSD_Basics.html

Conclusion

	Permissions: who can control what
	Goal
	Users and Groups
	Users and Groups cont.
	A program runs...
	A program in detail
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

