
Apache Security with SSL
Using FreeBSD

SANOG 16, July 15th – July 19th 2010
Bhutan, Paro

Hervey Allen
Network Startup Resource Center

Some SSL background
● Invented by Netscape for secure commerce.
● Only available using Netscape and Netscape Commerce

Server.
● Originally only one signing authority, RSA Data Security.
● Eric A. Young created SSLeay, an Open Source SSL

implementation.
● OpenSSL project extends SSLeay for public use.
● RSA spun certificate services division to Verisign in 1995.
● Netscape and Microsoft decided to support multiple CA's.
● 1996 the IETF Transport Layer Security (TLS) task force

was created. They published RFCs to support an open stream
encryption standard.

● TLS is based on SSL version 3.0 with additions. TLS and
SSL are just semantics.

● You might consider TSL to be SSL version 3.1.

What SSL Provides
● Secure communcation between client and server.
● SSL protocol works on top of the tcp/ip layer and

below the application layer.
● Provides for authentication using certificates,

multiple encryption cipher choices, methods to
exchange session keys, and integrity checking.

● Server authentication almost always takes place.
Client authentication is optional.

● Once authetication and handshaking are done then
data is transmitted using the strongest mutually
available cipher over tcp/ip.

● Weaker ciphers have resulted in some potential
SSL security holes.

Apache+mod_ssl – What is it?

Together Apache and mod_ssl create a
system of security with digital certificates
that allows you to offer secure, encrypted
connections to your web server.

mod_ssl is an Apache module that adds
“secure sockets layer” (ssl) and “transport
layer security” (tls) between a web server
and it's clients (web browsers).

Apache-ssl – What is it?

The original Apache with SSL software.
mod_ssl is a “split” from the apache-ssl
project.

Aimed at stability and security with less
features.

You can install both Apache-ssl and
Apache+mod_ssl via FreeBSD ports,
packages, or from source.

What are we going to use?

We'll use Apache Web server version 1.3.33
with mod_ssl version 2.8.22.

Apache currently runs about 70% of all web
sites on the Internet:
http://news.netcraft.com/archives/web_server_survey.html

mod_ssl is the most popular method for
using SSL with apache at this time.

And, the name?

What does “apache+mod_ssl” mean?

Any guesses?...

Apache = A Patchwork of programs

mod = Module (an Apache program)

SSL = Secure Socket Layer

Digital certificates and
signatures

If you generate a local digital certificate you
can pay a signing authority to verify your
certificate and they'll send it back to you
with their “signature”.

With the signing authority's signature your
certificate will be accepted by clients (web
browsers) without additional prompts.

A digitally signed certificate implies trust
that you are who you say you are between
your server and the clients who connect to
it.

How a certificate request is done

To generate a signed digital certificate from a commercial
CA for your site (using FreeBSD and openssl) you do the
following:
– Generate your own public and private keys using openssl.
– Answer requested information for the CA you choose to use.
– Send your public key and information to the CA.
– The CA will verify you are who you say you are.
– The CA creates a signed, digital certificate with their

private key, using your public key and additional
information.

– The signed certificate is made available to you.
– You place the certificate file in the appropriate location.
– Apache will now use this for all https requests. If client

browsers have the CA's public key, then a secure
connection is made without additional prompting.

Issues with certificate requests

● Can you trust the Certificate Authority?
● Maybe you should sign your public key...
● Verisign bought Thawte. Verisign signs the

majority of digital certificates. They are US-
based.

● How does the CA know who you are?

All these are good reasons to insist on
expiration dates in certificates.

Creating a signed certificate locally

● Today we will sign our own certificate using
our own private key.

● This can still be useful:
– Encrypts data.
– Deals with man-in-the middle attacks

after the initial connection and certificate
acceptance.

– It doesn't cost anything!

Installing support for SSL with
Apache

As of FreeBSD 6.1 you can choose from the
following three packages or ports:
– apache13-modssl
– apache13-modssl+ipv6
– apache13-ssl

Some of the items installed include:
– Local digital certificates in /usr/local/etc/apache/
– The configuration file /usr/local/etc/apache/httpd.conf
– Docs in /usr/local/share/doc/apache/mod/mod_ssl/index.html

Installing SSL support cont.

Another form to install mod_ssl is to compile
Apache with mod_ssl together from source.

You can download the code from:
– http://www.apache.org/
– http://www.modssl.org/

And, you can specify many options that you
cannot do, or that are more difficult to do,
using the package install or build from port
methods.

file:///Users/regnauld/WORK/home
file:///Users/regnauld/WORK/home

Configure a digital certificate

Do the following steps:
– mkdir /usr/local/etc/apache/mycert

– cd /usr/local/etc/apache/mycert

– openssl genrsa -des3 -out server.key 2048

– openssl rsa -in server.key -out server.pem

– openssl req -new -key server.key -out \
server.csr (answer the series of questions)

– openssl x509 -req -days 60 -in server.csr \
-signkey server.key -out server.crt

OpenSSL is installed with mod_ssl if it's not
already on your system.

Configure a certificate cont.

Explanation
openssl genrsa -des3 -out server.key 2048

generates a 2048 bit RSA key using the
OpenSSL libraries. The key is encoded
with the des3 (triple des) algorithm.

This key is private.

Configure a certificate cont.

Explanation
openssl rsa -in server.key -out server.pem

This removes the passphrase from the
private key and places the private key in
server.pem for future use.

We'll show why this is useful a bit later.

Configure a certificate cont.

Explanation
openssl req -new -key server.key -out server.csr

This generates a “csr” (Certificate Signing
Request) so that you can have the key
signed, or to generate a self-signed
certificate.

openssl x509 -req -days 365 -in server.csr -signkey \
server.key -out server.crt

This generates a certificate that's good for
365 days. You can make this shorter or
longer if you wish.

Remove the password

If we use the server.key default file then
each time Apache starts you'll be prompted
for the passphrase of your private key.

To remove the passphase we'll use the file
server.pem in place of the current
server.key file. This is the same as
server.key, but it's not encoded with a
passphrase.

Making the connection

OK, so you have a server.crt (server
certificate) file and a server.key file (with
our without a passphrase). Now what
happens when someone actually connects to
your ssl-enabled server?

From http://www.iiitmk.ac.in/~courses/itm108/2004-winter/presentation/ssloverv.ppt

● 10 Steps to an SSL session
– Client wants document from secure server:

https://some.server/document.html
– Server sends its certificate to the client.

https://some.server/document.html

Making the connection cont.

● 10 Steps to an SSL session continued...

– Checks if certificate was issued by trusted CA.
– Client compares information in the the

certificate with site’s public key and domain
name.

– Client tells the server what Cipher suites it has
available.

– The server picks the strongest mutually
available cipher suite and notifies the client.

– The client then generates a session key,
encrypts it using the server’s public key and
sends it to the server

Making the connection cont.

● 10 Steps to an SSL session continued...
– The server receives the encrypted session key

and decrypts it using its private key.
– The client and the server use the session key to

encrypt and decrypt the data they send to each
other.

Solving problems

If you cannot connect to the server check the
following:

● Check if firewalling software is running
and blocking access to port 443.

● Verify that Apache is listening for
connections on port 443 using

netstat -an | grep LISTEN

● To see certificate and/or configuration file
errors look in: ==>

Solving problems cont.

See errors in:
– /var/log/messages (tail -f /var/log/messages)
– /var/log/httpd-error.log
– /var/log/ssl_engine_log

And, as always, you can use:

http://www.google.com/

to look for other people having the same
problem.

file:///Users/regnauld/WORK/home

Understanding SSL: Some
resources

● Original Open Source version by Eric Young:
http://www2.psy.uq.edu.au/~ftp/Crypto/Welcome.html

● Nice published resource:
Web Security, Privacy & Commerce, 2nd. Ed.
O'Reilly Press:
http://www.oreilly.com/catalog/websec2/index.html

● Apache+mod_ssl:
http://www.modssl.org/

● Apache-ssl:
http://www.apache-ssl.org/

● The OpenSSL Project:
http://www.openssl.org/

Conclusion

The installation of Apache with mod_ssl permits
you to run a “secure” web server.

If you run webmail a secure server is essential for
your security and your client's security.

Apache with mod_ssl=https. This is an extra load
on your server. If you have many webmail clients
you may need to plan accordingly.

We'll take a look at some of the signing authorities
in your web browser now.

Without a signed certificate there is a fundamental
problem of trust when connecting to a server.

Exercises

And, now let's install Apache with mod_ssl
and generate our own local certificate that
we'll sign using our own private key...

	Cover
	Some SSL background
	What SSL provides
	apache+modssl
	Apache-ssl - What is it?
	What are we going to use?
	And, the name?
	certificates
	How a certificate request is done
	Issues with certificate requests
	Creating a signed certificate locally
	installing
	installing cont.
	Configuring a certificate
	Configure a certificate cont.
	Contigure a certificate cont. (2)
	Configure a certificate cont. (3)
	Remove the password
	Making the connection
	Making the connection cont.
	Making the connection cont. (2)
	Solving problems
	Solving problems cont.
	Understanding SSL: Some Resources
	Conclusion
	Exercises

