Internet Infrastructure

Sunny Chendi SANOG 26, Mumbai, India

Issue Date: 07 July 2015 Revision: 1.0

Overview

Visualising the interconnection

South Asia Internet Infrastructure

Live Demo

Looking ahead

Internet Infrastructure An introduction to Internet numbers

APNIC

What do I mean by Infrastructure

	Layer	Data unit	Function ^[3]		
	7. Application		High-level APIs, including resource sharing, remote file access, directory services and virtual terminals		
Host	6. Presentation	Data	Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption		
layers	5. Session		Managing communication sessions, i.e. continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes		
	4. Transport	Segments	Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing		
	3. Network	Packet/Datagram	Structuring and managing a multi-node network, including addressing, routing and traffic control		La
Media layers	2. Data link	Bit/Frame	Reliable transmission of data frames between two nodes connected by a physical layer	− a t	an De
	1. Physical	Bit	Transmission and reception of raw bit streams over a physical medium		

The Open Systems Interconnection (OSI) model

Sending data over the Internet

- Data is sent over the Internet in discrete packets
 - Each packet can be a few bytes or a few hundred bytes, or even larger
- Packets are sent from 'source' to 'destination'
 - When streaming YouTube movie on your mobile phone:
 - YouTube server is mainly the source
 - Your mobile phone is mainly the destination
- Every source and destination in the Internet must have an IP address
 - IPv4 example 203.0.113.15 (32 bit number)
 - IPv6 example 2001:db8:200:ff:1:dc:77:ab (128 bit number)

IP addresses and ASNs

6

Routing and ASN

- RFC 1930:
 - An AS (Autonomous System) is a connected group of one or more IP prefixes run by one or more network operators that has a SINGLE and CLEARLY DEFINED routing policy.
 - An AS has a globally unique number (sometimes referred to as an ASN, or Autonomous System Number) associated with it. This number is used in both the exchange of exterior routing information (between neighbouring AS's), and as an identifier of the AS itself.

Connecting to the Internet

Single-homed network No need for public ASN

Multi-homed network MAY have a need for BGP and public ASN

Why multihome with BGP and use a public ASN?

Cost

Good interconnection strategy can lower cost of operation by directing traffic through the most cost effective connections wherever possible

Resilience

Looking further than next hop path diversification allows you to better evaluate interconnection options, which in turn could result in better network resiliency

Performance

Understanding where your network traffic goes and when possible shortening the path to your main customers/suppliers/partners could result in better overall network experience

View within an AS: Telco/ISP

View within an AS: University

View within an AS: Data centre

View within an AS: Corporate

Visualising the interconnection

APNIC

The Internet

- Networks worldwide interconnect to form the Internet. They include ISPs, Internet Exchange Points, Universities, Corporate networks, etc.
- Each dot represents an AS
- There are 44,500+ ASNs currently active in the Internet

peer1.com

Global AS Core

Economy level ASN transit map

Data source

- Routeviews.org
 - RIBs from routers located in various locations (mostly Internet Exchanges) around the world (US, Japan, Korea, UK, Australia, Brazil, Singapore, Serbia)
- First week of April 2015 data
- RIBs collected every two hours
 - This is a snapshot, not live data
- This visualisation tool is a work in progress
 - APNIC values your feedback

Sample data

12.180.218.0/24 195.208.112.161 3277 3267 1299 7018 15253 12.180.218.0/24 80.91.255.137 1299 7018 15253 12.180.218.0/24 216.221.157.162 40191 3257 701 15253 12.180.218.0/24 208.51.134.246 3549 7018 15253 12.180.219.0/24 217.192.89.50 3303 3320 7018 19111 12.180.219.0/24 66.185.128.1 1668 7018 19111 12.180.219.0/24 192.241.164.4 62567 2914 7018 19111 12.180.219.0/24 5.101.110.2 3.5410 2914 7018 19111 12.180.219.0/24 198.129.33.85 293 6939 1299 7018 19111 12.180.219.0/24 129.250.0.11 2914 7018 19111

South Asia views

APNIC

Afghanistan

IPv6

55330

38742

AWCC

Bangladesh

APNIC

IPv6

IPv6

Nepal

IPv4

Pakistan

APNIC

(::)(;; **!**;);:;::)

IPv6

Sri Lanka

India Internet infrastructure

APNIC

India

In summary

- The first networks in India are predominantly service providers and academics
- The newer networks are mostly from corporates
- Core networks are established
- Edge networks are growing

Demo

APNIC

Looking ahead

APNIC

Looking ahead

- Global trends
 - As more organisations interconnect with upstreams, downstreams and peers, the number of advertised ASNs will continue to grow
 - Opportunities to reduce cost, improve resiliency and performance will be available to those with awareness of this rich network ecosystem
 - New technologies such as SDN and network virtualisation will drive innovations and change the way networks are interconnected, so expect to see a more dynamic ecosystem in the future

India IPv6

- Similar core network players as IPv4
- Populated by service providers and academic networks
 - Just like IPv4 when it started back in 1990
- Hoping to see more networks turning on their IPv6
 - Internet of Things network
 - Manufacturers
 - Utility companies
 - Smart cities

For discussion

- What's the Internet experience like in India?
 - From consumer's point of view
 - From corporation's point of view
 - From academic's point of view
 - From service provider's point of view
- What can be done better?
- What will India's Internet infrastructure looks like in the future?

THANK YOU

www.facebook.com/APNIC

www.twitter.com/apnic

www.youtube.com/apnicmultimedia

www.flickr.com/apnic

www.weibo.com/APNICrir

39