

DNS/DNSSEC Tutorial

Rick Lamb & Champika Wijayatunga | Kathmandu – Nepal 27 January 2016 – In conjunction with SANOG27

The World's Network – the Domain Name System

- + Internet Protocol numbers are unique addresses that allow computers to find one another
- + The Domain Name System matches IP numbers with a name
- + DNS is the underpinning of unified Internet
- + DNS keeps Internet secure, stable and interoperable
- + ICANN was formed in 1998 to coordinate DNS

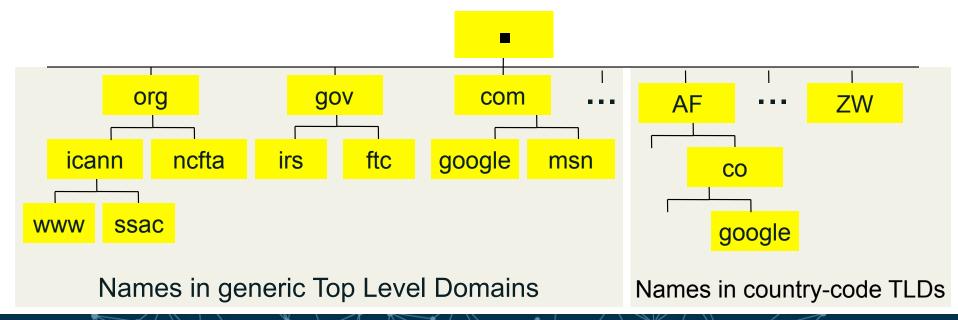
What is the Domain Name System?

A distributed database primarily used to obtain the

IP address, a number, e.g., 192.168.23.1 or fe80::226:bbff:fe11:5b32

that is associated with a

user-friendly name (<u>www.example.com</u>)


Why do we need a DNS?

It's hard to remember lots of four decimal numbers and it's impossibly hard to remember hexadecimal ones

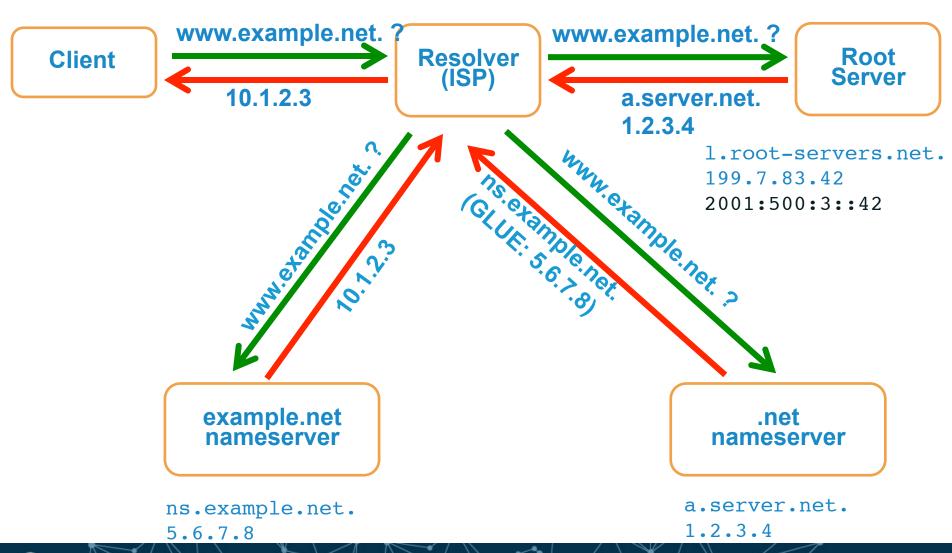
DNS Structure

- A domain is a node in the Internet name space
 - A domain includes all its descendants
- Domains have names
 - Top-level domain (TLD) names are generic or country-specific
 - TLD registries administer domains in the top-level
 - TLD registries delegate labels beneath their top level delegation

Root Servers to benefit Internet Stability and Resiliency

- ICANN is the L-Root Operator
- + L-Root nodes keep Internet traffic local and resolve queries faster
- Make it easier to isolate attacks
- + Reduce congestion on international bandwidth
- Redundancy and load balancing with multiple instances

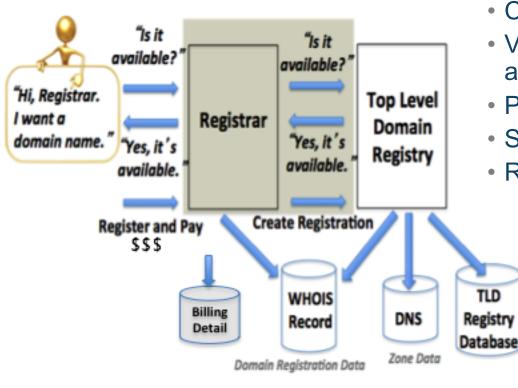
L-Root presence



DNS Servers

- DNS is a distributed database
- Types of DNS servers
 - DNS Authoritative
 - Primary (Master)
 - Secondary (Slaves)
 - DNS Resolver
 - Recursive
 - Cache
 - Stub resolver

DNS Resolution



Operational elements of the DNS

- Authoritative Name Servers host zone data
 - The set of "DNS data" that the registrant publishes
- Recursive Name Resolvers ("resolvers")
 - Systems that find answers to queries for DNS data
- Caching resolvers
 - Recursive resolvers that not only find answers but also store answers locally for "TTL" period of time
- Client or "stub" resolvers
 - Software in applications, mobile apps or operating systems that query the DNS and process responses

Domain Name Registration 101

How to register a domain:

- Choose a string e.g., example
- Visit a registrar to check string availability in a TLD
- Pay a fee to register the name
- Submit registration information
- Registrar and registries manage:
 - "string" + TLD(managed in registry DB)
 - Contacts, DNS (managed in Whois)
 - DNS, status (managed in Whois DBs)
 - Payment information

DNS Resource Records (RR)

- Unit of data in the Domain Name System
- Define attributes for a domain name

Label	TTL	Class	Type	RData
www	3600	IN	A	192.168.0.1

- Most common types of RR
 - 。 **A**
 - AAAA
 - 。 NS
 - 。 SOA
 - $_{\circ}$ MX
 - CNAME

What is a DNS zone data?

- DNS zone data are hosted at an authoritative name server
 - Each "cut" has zone data (root, TLD, delegations)
- DNS zones contain resource records that describe
 - name servers,
 - IP addresses,
 - Hosts,
 - Services
 - Cryptographic keys & signatures...

```
86400; 24 hours could have been written as 24h or 1d
 $TTL used for all RRs without explicit TTL value
SORIGIN example.com.
             IN SOA nsl.example.com. hostmaster.example.com. (
                     2002022401 ; serial
                     3H : refresh
                     15; retry
                     lw : expire
                     3h ; minimum
                                            ; NS in the domain bailiwick
                         nsl.example.com.
                         ns2.smokeyjoe.com.; NS external to domain
             IN MX 10 mail.another.com. ; external mail provider
 Sender policy framework with hard fail
 Use A and MX resource records for verification and google too
example.com. IN TXT "v=spf1 a mx include:google.com ~all"
 server host definitions
                         192.168.0.1
                                            :name server definition
             IN A
                         192,168,0,2
                                            ;web server definition
 web and ftp server on same address
ftp
                 CNAME www.example.com.
                                            ;ftp server definition
 endpoint or non server domain hosts
mikeslaptop
                         192.168.0.3
fredsipad
             IN A
                         192.168.0.4
```

Only US ASCII-7 letters, digits, and hyphens can be used as zone data.

In a zone, IDNs strings begin with XN--

Common DNS Resource Records

```
86400 ; 24 hours could have been written as 24h or 1d
; $TTL used for all RRs without explicit TTL value
$ORIGIN example.com.
             IN SOA nsl.example.com. hostmaster.example.com. (
                     2002022401 ; serial
                     3H : refresh
                     15; retry
                     lw ; expire
                     3h ; minimum
                                          ; NS in the domain bailiwick
                         nsl.example.com.
                         ns2.smokeyjoe.com.; NS external to domain
              IN MX 10 mail.another.com. ; external mail provider
; Sender policy framework with hard fail
; Use A and MX resource records for verification and google too
example.com. IN TXT "v=spf1 a mx include:google.com ~all"
: server host definitions
                                            ; name server definition
             IN A
                         192.168.0.1
nsl
                         192,168,0,2
                                            :web server definition
; web and ftp server on same address
ftp
              IN CNAME www.example.com.
                                            ;ftp server definition
 endpoint or non server domain hosts
                         192.168.0.3
mikeslaptop
              IN A
fredsipad
              IN A
                         192.168.0.4
```

Time to live (TTL)

- How long RRs are accurate
 Start of Authority (SOA) RR
- Source: zone created here
- Administrator's email
- Revision number of zone file

Name Server (NS)

- IN (Internet)
- Name of authoritative server

Mail Server (MX)

- IN (Internet)
- Name of mail server

Sender Policy Framework (TXT)

Authorized mail senders

Common DNS Resource Records

```
86400; 24 hours could have been written as 24h or 1d
; $TTL used for all RRs without explicit TTL value
$ORIGIN example.com.
             IN SOA nsl.example.com. hostmaster.example.com. (
                     2002022401 ; serial
                     3H : refresh
                     15; retry
                     lw ; expire
                     3h ; minimum
                                          ; NS in the domain bailiwick
             IN NS
                        nsl.example.com.
                        ns2.smokeyjoe.com.; NS external to domain
              IN MX 10 mail.another.com. ; external mail provider
; Sender policy framework with hard fail
 Use A and MX resource records for verification and google too
example.com. IN TXT "v=spf1 a mx include:google.com ~all"
; server host definitions
                                            ; name server definition
             IN A
                        192.168.0.1
             TN A
                        192,168,0,2
                                            ;web server definition
; web and ftp server on same address
ftp
             IN CNAME www.example.com.
                                          ;ftp server definition
; endpoint or non server domain hosts
                        192.168.0.3
mikeslaptop
             IN A
fredsipad
              IN A
                        192.168.0.4
```

Name server address record

- NS1 (name server name)
- IN (Internet)
- A (IPv4) * AAAA is IPv6
- IPv4 address (192.168.0.1)

Web server address record

- www (world wide web)
- IN (Internet)
- A (IPv4) * AAAA is IPv6
 IPv4 address (192.168.0.2)


File server address record

- FTP (file transfer protocol)
- IN (Internet)
- CNAME means "same address spaces and numbers as www"

Places where DNS data lives

Changes do not propagate instantly

Delegating a Zone

- Delegation is passing of authority for a subdomain to another party
- Delegation is done by adding NS records
 - Ex: if icann.org wants to delegate ssr.icann.org

```
ssr.icann.org. NS nsl.ssr.icann.org. ssr.icann.org. NS nsl.ssr.icann.org.
```

- Now how can we go to ns1 and ns2?
 - We must add a Glue Record

Glue Record

- Glue is a 'non-authoritative' data
- Don't include glue for servers that are not in the sub zones

ssr.icann.org. NS ns1.ssr.icann.org. ns2.ssr.icann.org. NS ns2.ssr.icann.org. ssr.icann.org. NS ns2.example.net. ssr.icann.org. NS ns1.example.net. ns1.ssr.icann.org. A 10.0.0.1 Ns2.ssr.icann.org. A 10.0.0.2

Only this record needs glue

Glue

Record

Delegating ssr.icann.org. from icann.org.

- 1. Add NS records and glue
- 2. Make sure there is no other data from the ssr.icann.org. zone in the zone file

ns.ssr.icann.org

- 1. Setup minimum two servers
- 2. Create zone file with NS records
- 3. Add all ssr.icann.org data

