
Data Analytics Layer for

High-Interaction Honeypots
Iqra Khan

1

Agenda

 Motivation

 Virtualization & cloud security

 VMI

 Honeypots

 Malware analysis

 Methodology

 STIX

2

Motivation

 Cloud computing – today’s most exciting & important

technology

 Relocation of systems and services into cloud environments

is on the rise

 Users loose direct access / control over their systems

 Memory investigations and forensic processes for

attacks/malwares are limited in cloud

3

Leveraging virtualization in cloud

computing

 Deployment of Clouds are all about pooling resources to increase

efficiency

 Reduces cost

 Server virtualization, storage virtualization etc.

 High availability

 Virtualization is an excellent foundation for building clouds

4

Cloud Security

 Security of VMs is a hot topic due to their outsourcing in cloud

computing

 Large number of VMs

 Network of VMs

 As Scope of virtualization in cloud computing is increased so does

the sophistication of attacks on it

5

Attack Scenario in Cloud6

Traditional approaches for VMs security

 In-guest antiviruses or Host based IDSs

 Provides no isolation

 Network Intrusion detection systems

 Limited or no context

 Scan VM disk and memory

 No interposition

7

Cloud Security

 Move protection out from the VM

 Hypervisor based isolation

 Full view of the VM state

 Interpret virtual hardware to see processes, users, connections,

files..

 Actively monitor & control

 Interposition

8

Virtual Machine Introspection (VMI)

Virtual Machine Introspection (VMI) is the act of observing the
state of VMs from an external entity that can be either another

VM or VMM\hypervisor.

9

VMI (cont.)

VMI leverages virtualization in three ways:

 Isolation

 prevents a guest code from reading and writing outside of a VM.

 Inspection

 VMM can examine the entire state of the guest system (memory,

devices, etc.).

 Interposition

VMM can interrupt guest code at any time

10

Why VMI ?

 VMI introspection offers greater credibility of malware

analysis than traditional antivirus software running on VMs

 VMI technique inspects and monitor state of VM in an

isolated environment separate from VM

 This isolation separates the VMI software from tampering by

any application or malware inside the monitored VM.

11

VMI Advantages

 No altering of the target system

 Very hard to detect the monitoring

 Live analysis of memory content

 Detection of advanced memory resident malware

 More reliable data

 No data corruption through malware

12

VMI deployment levels

 Process Introspection

 I/O Introspection

 Memory Introspection

13

Classification of VMI techniques [2]

Memory Introspection

 Memory introspection deals with live analysis of VM

memory.

 Memory contains information like:

 Running processes

 Kernel Data Structures

 Page Tables

 Registry Entries

14

Memory Introspection (cont.)

 Majority of malware analysis tools inspect the program

behaviour by examining main memory contents of the

given program

 These contents helps in intrusion detection or process

analysis of the guest VM

15

How can memory of a VM be accessed

from outside?

LibVMI

16

LibVMI

 LibVMI is an open source library for VMI. It is based on XenAccess library

used for VMI.

 XenAccess provides a useful application programming interface (API) for

reading to and writing from a virtual machine’s memory.

 Modified to support KVM hypervisor

 That’s why named as LibVMI

 Xen provides built-in functionality to support VMI whereas KVM doesn’t

provide any

17

Features

 Read and write arbitrary data from and to memory

 Access memory using physical addresses, virtual addresses, or
kernel symbols

 Parse kernel symbols dynamically from running Windows kernel

 Load Linux kernel symbols from system map file

 Expose useful address translation functions through API functions to
resolve kernel symbols to a virtual address or translate a kernel or
user virtual address into a physical address

 Pause/unpause the VM through an API function

 Write your introspection code once and have it work across multiple
virtualization platforms

18

Features (cont.)
19

libvmi.conf example
20

Features (cont.)21

Virtual Honeypots

 Virtual honeypots exist as a virtual resource

instead of dedicated physical system with the

purpose of attracting and logging cyber-attacks

in real time

 Often emulate or are exposed to live security vulnerabilities in

order to capture and monitor both malware and cyber-attackers

 Can be used to monitor various protocols, applications, or

operating system attacks

 Malware execution behaviors can be logged and can be used

in malware research

22

Virtual honeypots (cont.)

 Detection & Response not prevention

 Collects evidence information and detects attack patterns

 Defenders can respond to these evidences by building better defenses and

countermeasures against future security threats

23

Honeypots Categorization
24

DeploymentInteraction

Honeypots

High-

Interaction

Honeypots

Research

Honeypots

Production

Honeypots

Low-

Interaction

Honeypots

Related work

 CloudVMI - VMI offered as a service in public clouds

 VMI-Honeymon - high-interaction honeypot monitor which uses virtual
machine memory introspection on Xen

 Livewire

 Collapsar

 VMScope

25

Methodology

VMI capability is combined with malware analysis

and virtual honeypots to achieve the objective

Extracted IOCs are then converted in STIX

programming language

26

Architecture Design

KVM hypervisor

Server Virtualization

Host-only networking

 LibVMI and Volatility

Virtual Honeypots

27

Architecture Design (cont.)
28

LibVMI KVM support

 For KVM there are two approaches to access VM

memory

1. GDB (GNU Debugger)

2. A patch created for KVM that enabled memory access

through a UNIX domain socket

29

KVM (kernel-based VM) hypervisor

 Hypervisor of choice for open source clouds

 Low cost

 High scalability

 Ease of deployment

 Openstack

 IBM SmartCloud Enterprise

 Intel IT

30

Deployed Honeypots

Kfsensor

Valhala

HoneyBOT

31

32

Alerts

33

Statistical analysis

reports

Individual events

34

Attacked services

alerts

Traffic initiated by particular attacker machine

Volatility

Volatility is an open source memory forensic tool

helping incident response and memory forensics.

35

Used Volatility plug-ins for memory

introspection

 pslist

 pstree

 connections

 connscan

 malfind

 handles

 dlllist

 svscan

 getsids

 strings etc.

36

IOCs to look for?

 Suspicious processes are spawned out of right path?

 Suspicious process is running under its legitimate parent

process, or some

other process spawned it?

 At what time process started and exited?

 What privileges process under consideration has? Whether

this process

should have these privileges?

37

IOCs to look for? (cont.)

 Another important point is process name. See is it matching

to some legitimate Windows process and malware

attacker change it a bit to match a legitimate Windows

process to avoid detection.

 See for the associated process objects like threads,

mutexes, DLL, process to file mappings, memory Sections,

associated sockets and ports open by that process.

 Connections initiated by the process and the connection

initiated it

38

Performed Analysis stages

39
Manual
code

reversing

Interactiv
e

Properties
Analysis

Fully
Automat

ed
Analysis

Static
propertie
s Analysis

Malware

analysis

stages

Studied attacks

 Reflective Injection

 Trojans

 Attacks on specific vulnerable ports used by most attackers

40

Flow chart

41

Infected the

system and

start listening

to remote IP

Introspected

with volatility

and LibVMI

malfindapihooks

Honeypot

alert of

remote IP

connection

Connections

& connscan

Process

detected

(skccca.exe)

dlllistprivs
Handles

(mutant)

getsidsstringsvaddump svscan

42

43

44

Structured Threat Information

Expression (STIX)

 A programming language for conveying data about cybersecurity threats

in a common language that can be easily understood by humans and

security technologies.

 A variety of high-level cyber security use cases rely on such information

including:

 Analyzing cyber threats

 Specifying indicator patterns for cyber threat

 Managing cyber threat response activities

 Sharing cyber threat information

 Consistency, efficiency, interoperability, and overall situational awareness.

 CybOX: Cyber Observable eXpression

45

STIX Architecture

Cyber Observables - what activities we are observing on our
networks or systems

 Indicators - What threats should I look for on my networks and
systems and why?

 Incidents - Where has this threat been seen?

 Adversary Tactics, Techniques, and Procedures (including
attack patterns, malware, exploits, kill chains, tools,
infrastructure, victim targeting, etc.) - What does it do?

46

STIX Architecture (cont.)

 Exploit Targets (e.g., vulnerabilities, weaknesses or

configurations) - What weaknesses does this threat

exploit?

Courses of Action (e.g., incident response or

vulnerability/weakness remedies or mitigations) - What

can we do about it?

Cyber Attack Campaigns - Why does it do this?

Cyber Threat Actors - Who is responsible for this threat?

47

STIX Architecture (cont.)

48

Converted STIX IOCs
49

Converted STIX IOCs (cont.)
50

Future Work

 Extract low-level information programmatically through LibVMI

 Using a network of honeypots

51

References

 https://www.usenix.org/conference/cset12/workshopprogram/p
resentation/Lengyel

 http://libvmi.com/docs/gcode-intro.html

 https://www.blackhat.com/docs/us-16/materials/us-16-Zillner-
Memory-Forensics-Using-VMI-For-Cloud-Computing.pdf

 http://www.ijser.org/paper/Cloud-Security-using-Honeypot-
Systems.html

 http://www.esecurityplanet.com/network-security/how-vmi-can-
improve-cloud-security.html

 https://publish.illinois.edu/assured-
cloudcomputing/files/2015/05/041915-Virtual-Machine-
Instrospection-Overview.pdf

52

https://www.usenix.org/conference/cset12/workshopprogram/presentation/Lengyel
http://libvmi.com/docs/gcode-intro.html
https://www.blackhat.com/docs/us-16/materials/us-16-Zillner-Memory-Forensics-Using-VMI-For-Cloud-Computing.pdf
http://www.ijser.org/paper/Cloud-Security-using-Honeypot-Systems.html
http://www.esecurityplanet.com/network-security/how-vmi-can-improve-cloud-security.html
https://publish.illinois.edu/assured-cloudcomputing/files/2015/05/041915-Virtual-Machine-Instrospection-Overview.pdf

Thanks !
53

