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Motivation

 Cloud computing – today’s most exciting & important 

technology  

 Relocation of systems and services into cloud environments 

is on the rise 

 Users loose direct access / control over their systems

 Memory investigations and forensic processes for 

attacks/malwares are limited in cloud
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Leveraging virtualization in cloud 

computing

 Deployment of Clouds are all about pooling resources to increase 

efficiency

 Reduces cost

 Server virtualization, storage virtualization etc.

 High availability

 Virtualization is an excellent foundation for building clouds
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Cloud Security

 Security of VMs is a hot topic due to their outsourcing in cloud 

computing

 Large number of VMs

 Network of VMs

 As Scope of virtualization in cloud computing is increased so does 

the sophistication of attacks on it
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Attack Scenario in Cloud6



Traditional approaches for VMs security  

 In-guest antiviruses or Host based IDSs

 Provides no isolation

 Network Intrusion detection systems

 Limited or no context 

 Scan VM disk and memory 

 No interposition 
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Cloud Security

 Move protection out from the VM 

 Hypervisor based isolation 

 Full view of the VM state 

 Interpret virtual hardware to see processes, users, connections, 

files.. 

 Actively monitor & control 

 Interposition 
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Virtual Machine Introspection (VMI)

Virtual Machine Introspection (VMI) is the act of observing the 
state of VMs from an external entity that can be either another 

VM or VMM\hypervisor.
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VMI (cont.)

VMI leverages virtualization in three ways:

 Isolation

 prevents a guest code from reading and writing outside of a VM.

 Inspection

 VMM can examine the entire state of the guest system (memory, 

devices, etc.).

 Interposition

VMM can interrupt guest code at any time
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Why VMI ?

 VMI introspection offers greater credibility of malware 

analysis than traditional antivirus software running on VMs

 VMI technique inspects and monitor state of VM in an 

isolated environment separate from VM

 This isolation separates the VMI software from tampering by 

any application or malware inside the monitored VM. 
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VMI Advantages

 No altering of the target system 

 Very hard to detect the monitoring 

 Live analysis of memory content

 Detection of advanced memory resident malware 

 More reliable data 

 No data corruption through malware
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VMI deployment levels

 Process Introspection

 I/O Introspection

 Memory Introspection
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Memory Introspection

 Memory introspection deals with live analysis of VM 

memory. 

 Memory contains information like:

 Running processes

 Kernel Data Structures

 Page Tables

 Registry Entries
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Memory Introspection (cont.)

 Majority of malware analysis tools inspect the program 

behaviour by examining main memory contents of the 

given program

 These contents helps in intrusion detection or process 

analysis of the guest VM
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How can memory of a VM be accessed 

from outside? 

LibVMI
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LibVMI

 LibVMI is an open source library for VMI. It is based on XenAccess library 

used for VMI.

 XenAccess provides a useful application programming interface (API) for 

reading to and writing from a virtual machine’s memory.  

 Modified to support KVM hypervisor

 That’s why named as LibVMI

 Xen provides built-in functionality to support VMI whereas KVM doesn’t 

provide any
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Features

 Read and write arbitrary data from and to memory 

 Access memory using physical addresses, virtual addresses, or 
kernel symbols

 Parse kernel symbols dynamically from running Windows kernel

 Load Linux kernel symbols from system map file

 Expose useful address translation functions through API functions to 
resolve kernel symbols to a virtual address or translate a kernel or 
user virtual address into a physical address

 Pause/unpause the VM through an API function

 Write your introspection code once and have it work across multiple 
virtualization platforms
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Features (cont.)
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libvmi.conf example
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Features (cont.)21



Virtual Honeypots

 Virtual honeypots exist as a virtual resource 

instead of dedicated physical system with the 

purpose of attracting and logging cyber-attacks 

in real time

 Often emulate or are exposed to live security vulnerabilities in 

order to capture and monitor both malware  and cyber-attackers

 Can be used to monitor various protocols, applications, or 

operating system attacks

 Malware execution behaviors can be logged and can be used 

in malware research
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Virtual honeypots (cont.)

 Detection & Response not prevention

 Collects evidence information and detects attack patterns

 Defenders can respond to these evidences by building better defenses and 

countermeasures against future security threats
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Honeypots Categorization
24

DeploymentInteraction

Honeypots

High-

Interaction 

Honeypots

Research 

Honeypots

Production

Honeypots

Low-

Interaction 

Honeypots



Related work

 CloudVMI - VMI offered as a service in public clouds

 VMI-Honeymon - high-interaction honeypot monitor which uses virtual 
machine memory introspection on Xen

 Livewire

 Collapsar

 VMScope
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Methodology

VMI capability is combined with malware analysis 

and virtual honeypots to achieve the objective

Extracted IOCs are then converted in STIX 

programming language
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Architecture Design

KVM hypervisor

Server Virtualization

Host-only networking

 LibVMI and Volatility

Virtual Honeypots
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Architecture Design (cont.)
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LibVMI KVM support

 For KVM there are two approaches to access VM 

memory

1. GDB (GNU Debugger)

2. A patch created for KVM that enabled memory access 

through a UNIX domain socket
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KVM (kernel-based VM) hypervisor

 Hypervisor of choice for open source clouds

 Low cost

 High scalability 

 Ease of deployment

 Openstack

 IBM SmartCloud Enterprise

 Intel IT 
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Deployed Honeypots

Kfsensor

Valhala

HoneyBOT
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Volatility

Volatility is an open source memory forensic tool 

helping incident response and memory forensics.
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Used Volatility plug-ins for memory 

introspection

 pslist

 pstree

 connections

 connscan

 malfind

 handles

 dlllist

 svscan

 getsids

 strings etc.
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IOCs to look for?

 Suspicious processes are spawned out of right path?

 Suspicious process is running under its legitimate parent 

process, or some

other process spawned it?

 At what time process started and exited?

 What privileges process under consideration has? Whether 

this process

should have these privileges?
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IOCs to look for? (cont.)

 Another important point is process name. See is it matching 

to some legitimate Windows process and malware

attacker change it a bit to match a legitimate Windows 

process to avoid detection.

 See for the associated process objects like threads, 

mutexes, DLL, process to file mappings, memory Sections, 

associated sockets and ports open by that process.

 Connections initiated by the process and the connection 

initiated it
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Performed Analysis stages
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Studied attacks 

 Reflective Injection

 Trojans

 Attacks on specific vulnerable ports used by most attackers
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Flow chart 
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Structured Threat Information 

Expression (STIX)

 A programming language for conveying data about cybersecurity threats 

in a common language that can be easily understood by humans and 

security technologies.

 A variety of high-level cyber security use cases rely on such information 

including:

 Analyzing cyber threats

 Specifying indicator patterns for cyber threat

 Managing cyber threat response activities

 Sharing cyber threat information

 Consistency, efficiency, interoperability, and overall situational awareness.

 CybOX:  Cyber Observable eXpression
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STIX Architecture

Cyber Observables  - what activities we are observing on our 
networks or systems

 Indicators - What threats should I look for on my networks and 
systems and why? 

 Incidents - Where has this threat been seen? 

 Adversary Tactics, Techniques, and Procedures (including 
attack patterns, malware, exploits, kill chains, tools, 
infrastructure, victim targeting, etc.) - What does it do? 
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STIX Architecture (cont.)

 Exploit Targets (e.g., vulnerabilities, weaknesses or 

configurations) - What weaknesses does this threat 

exploit? 

Courses of Action (e.g., incident response or 

vulnerability/weakness remedies or mitigations) - What 

can we do about it? 

Cyber Attack Campaigns - Why does it do this? 

Cyber Threat Actors - Who is responsible for this threat?
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STIX Architecture (cont.)
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Converted STIX IOCs
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Converted STIX IOCs (cont.)
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Future Work

 Extract low-level information programmatically through LibVMI

 Using a network of honeypots 
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