Implementation of DNS Anycast
a case study

A. S. M. Shamim Reza | Md. Tawhidul Islam Bhuiyan

Network Operation Center
Link3 Technologies Ltd
[~]$ whoami

- Linux Geek
- Open Source Software Enthusiast
- EC-Council Certified Security Analyst

ASMSHaminReza
shamimreza@link3.net
sohag.shamim@gmail.com
Anycast is a routing method in which incoming requests can be routed to a variety of different locations.
The Journey

- Why Anycast DNS – background history
- Challenges – that we have faced
- Deployment – what we have done
- Configuration – the fun part
- Performance & Security tuning – do’s & don’t
Why Anycast DNS
background history
What we have faced?

1. Existing DNS server OS version was about to obsolete
2. Resource utilization was always 95%-99%
3. When server was attacked with DDOS
 a. Query response delayed & most of the cases it stopped answering
 b. Unstable DNS service for user internet access
4. Log search was not administration friendly
5. No log options for Recursive query
DNS Server – What we had

Software resources
- CentOS 5 32 bit
- bind-utils-9.3.4-10.P1.el5
- ypbind-1.19-11.el5
- bind-libs-9.3.4-10.P1.el5

Hardware resources
- Core – 2
- RAM – 4 GB
- HDD – Sata 7.2k RPM
Why we choose Anycast

• Because of the advantages –
 • users of an anycast service will always connect to the closest DNS server; This reduces latency,
 • if one server is being overly loaded, simply deploy another one in a location that would allow it to take some proportion of the overloaded server's requests; horizontal scaling.

• We need to have 1 single IP for the Recursive DNS server all over Bangladesh.

• As we are also expanding our network infrastructure, we didn’t want our zonal internet user to be depended on our Central Data Center based DNS system.
Challenges that we have faced
Technical Difficulties - Not really but

- Monitoring was more complicated
- Monitoring the anycast IP can not be done centrally
- Changing the DNS server IP of all the internet users
 - Informed client with email, sms and other notification option
Deployment
what we have done
Decision – we have taken

- Security first
- Deploy with updated OS
- Divide the Authoritative & Recursive into two servers
- Deploy the IP Anycast for Recursive DNS only
- Configure the caching log based on search criteria
- Agent based Central Monitoring to monitor individual servers
Procedure – we have listed

• Address selection
• Host configuration
• Service configuration
• Network configuration
• Follow standard security measures
Resources – that we have allocated for server

<table>
<thead>
<tr>
<th>Software Resources</th>
<th>Hardware Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>CentOS 7.5 64 bit</td>
<td>CPU Core – 4 with 2 Socket</td>
</tr>
<tr>
<td>rpcbind-0.2.0-44.el7.x86_64</td>
<td>RAM – 4 GB DDR4</td>
</tr>
<tr>
<td>bind-chroot-9.9.4-61.el7.x86_64</td>
<td>HDD – Sata SAS 15k RPM</td>
</tr>
<tr>
<td>bind-license-9.9.4-61.el7.noarch</td>
<td></td>
</tr>
<tr>
<td>bind-utils-9.9.4-61.el7.x86_64</td>
<td></td>
</tr>
<tr>
<td>bind-9.9.4-61.el7.x86_64</td>
<td></td>
</tr>
<tr>
<td>bind-libs-lite-9.9.4-61.el7.x86_64</td>
<td></td>
</tr>
<tr>
<td>bind-libs-9.9.4-61.el7.x86_64</td>
<td></td>
</tr>
<tr>
<td>iptables-1.4.7-16.el6.x86_64</td>
<td></td>
</tr>
<tr>
<td>iptables-ipv6-1.4.7-16.el6.x86_64</td>
<td></td>
</tr>
<tr>
<td>quagga-0.99.22.4-5.el7_4.x86_64</td>
<td></td>
</tr>
</tbody>
</table>
Network Diagram
With the New System – challenges

- Query response was slower/ Some of the users are not getting response

- Server resources was filled up with log files and DNS service was stacked, but BGP was up; so no one was getting internet and the anycast shifting didn’t happened.
With the New System – why we suffered

- Performance tuning wasn’t done
- Monitoring wasn’t placed properly
- Query hit increased to 6k/second
With the New System – recovery steps

- Configured the log rotation based on file size
- Decided to move all the log to the central server after every one hour
- Write up a script to sense dns service;
 - if PiD is null value then shutdown the BGP. That will automatically shift the IP Anycast to nearest one.
 - If PiD is ok then check with localhost if it answers to DNS query, if not then shutdown the BGP.
With the New System – the script

```
#!/bin/bash

DNSUP=`/usr/bin/dig @179.100.0.254 localhost. A +short`
if [ "$DNSUP" != "127.0.0.1" ];
then
    echo "Stopping Anycast...."
    /etc/init.d/bgpd stop
    /etc/init.d/zebra stop
    echo "Stopped: DC Anycast DNS has stopped working, BGP has already been shutdown, Please check the system right now."
    | mailx -S smtp=smtp.notification.net:25 -s "Alert: Stopped - DC Anycast DNS has stopped working" nothing@notification.com
else
    echo "Everything's good... Do nothing..."
fi
```
Configuration
the fun part
Configuration - address selection

• Dedicated unique management IP for each host
• Designated 1 single /32 for Anycast address for all servers
• Private ASN 65430 for peering with ISP core
Dhaka Server - assigned anycast address

Anycast address as an additional loopbacks

```
[root@dc-anycast-dns network-scripts]# ifconfig lo:0
lo:0: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536
    inet 179.100.0.254  netmask 255.255.255.255
    loop  txqueuelen 1  (Local Loopback)
```
Configuring named service to listen on anycast address

```
[root@dc-anycast-dns etc]# vim /var/named/chroot/etc/named.conf

options {
    listen-on port 53 { 127.0.0.1; 179.100.0.254; };
    directory       "/var/named";
    dump-file       "/var/named/data/cache_dump.db";
    statistics-file "/var/named/data/named_stats.txt";
    memstatistics-file "/var/named/data/named_mem_stats.txt";
    allow-query     { localhost; 192.168.0.0/16; };
    allow-query-cache { localhost; 192.168.0.0/16; };
    allow-recursion { localhost; 192.168.0.0/16; };
    version "go to sleep";
    recursive-clients 100000;
};
```
Dhaka Server - named service

Configuring named service for separate query logging

```
logging {
  channel default_file {
    file "/var/named/chroot/var/log/named/default.log" versions 2 size 200m;
    severity dynamic;
    print-time yes;
  };
  channel queries_file {
    file "/var/named/chroot/var/log/named/queries.log" versions 2 size 4096m;
    severity dynamic;
    print-time yes;
  };
  channel resolver_file {
    file "/var/named/chroot/var/log/named/resolver.log" versions 2 size 200m;
    severity dynamic;
    print-time yes;
  };
  channel security_file {
    file "/var/named/chroot/var/log/named/security.log" versions 2 size 200m;
    severity dynamic;
    print-time yes;
  };
  category default { default_file; };
  category security { security_file; };
  category resolver { resolver_file; };
  category queries { queries_file; }
};
```
Configuring zebra.conf

[root@dc-anycast-dns quagga]# # vim /etc/quagga/zebra.conf
hostname dc-anycast-dns.link3.net
!
enable password NothingToSay
!
interface eth0
ip address 192.168.0.226/30
!
interface lo:0
ip address 179.200.0.254/32
!
interface lo
!
line vty
!
Dhaka Server - quagga & bgp

Configuring bgpd.conf

```
[root@dc-anycast-dns quagga]# vim /etc/quagga/bgpd.conf
hostname dc-anycast-dns.link3.net
password NothingToSay
log stdout
!
router bgp 65430
    network 179.200.0.254/32
    neighbor 192.168.0.225 remote-as 23688
    neighbor 192.168.0.225 description BTS
    neighbor 192.168.0.225 activate
    neighbor 192.168.0.225 next-hop-self
    neighbor 192.168.0.225 remove-private-AS
    neighbor 192.168.0.225 soft-reconfiguration inbound
    neighbor 192.168.0.225 prefix-list anycast out
    neighbor 192.168.0.225 prefix-list default in
!
ip prefix-list default seq 15 permit 0.0.0.0/0
ip prefix-list anycast seq 5 permit 179.200.0.254/32
```
Configuring BGP from router

```plaintext
router bgp 23688
  network 192.168.0.224 mask 255.255.255.252
  neighbor 192.168.0.226 remote-as 65430
  neighbor 192.168.0.226 description DC-DNS_Anycast-SERVER
  neighbor 192.168.0.226 activate
  neighbor 192.168.0.226 next-hop-self
  neighbor 192.168.0.226 default-originate
  neighbor 192.168.0.226 remove-private-as
  neighbor 192.168.0.226 soft-reconfiguration inbound
  neighbor 192.168.0.226 prefix-list anycast-DNS-in in
  neighbor 192.168.0.226 prefix-list default out
  ip prefix-list anycast-DNS-in seq 10 permit 179.200.0.254/32
  ip prefix-list default seq 5 permit 0.0.0.0/0
```
Sylhet Server - assigned anycast address

Anycast address as an additional loopbacks

```
[root@syl-anycast-dns network-scripts]# ifconfig lo:0

lo:0: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536
    inet 179.100.0.254  netmask 255.255.255.255
    loop  txqueuelen 1  (Local Loopback)
```
Sylhet Server - named service

<table>
<thead>
<tr>
<th>Configuring named service to listen on anycast address</th>
</tr>
</thead>
<tbody>
<tr>
<td>[root@syl-anycast-dns etc]# vim /var/named/chroot/etc/named.conf options</td>
</tr>
<tr>
<td>listen-on port 53 { 127.0.0.1; 179.100.0.254; };</td>
</tr>
<tr>
<td>directory "/var/named";</td>
</tr>
<tr>
<td>dump-file "/var/named/data/cache_dump.db";</td>
</tr>
<tr>
<td>statistics-file "/var/named/data/named_stats.txt";</td>
</tr>
<tr>
<td>memstatistics-file "/var/named/data/named_mem_stats.txt";</td>
</tr>
<tr>
<td>allow-query { localhost; 192.168.0.0/16; };</td>
</tr>
<tr>
<td>allow-query-cache { localhost; 192.168.0.0/16; };</td>
</tr>
<tr>
<td>allow-recursion { localhost; 192.168.0.0/16; };</td>
</tr>
<tr>
<td>version "go to sleep" ;</td>
</tr>
<tr>
<td>recursive-clients 100000;</td>
</tr>
</tbody>
</table>
Configuring named service for separate query logging

```
logging {
  channel default_file {
    file "/var/named/chroot/var/log/named/default.log" versions 2 size 200m;
    severity dynamic;
    print-time yes;
  };
  channel queries_file {
    file "/var/named/chroot/var/log/named/queries.log" versions 2 size 4096m;
    severity dynamic;
    print-time yes;
  };
  channel resolver_file {
    file "/var/named/chroot/var/log/named/resolver.log" versions 2 size 200m;
    severity dynamic;
    print-time yes;
  };
  channel security_file {
    file "/var/named/chroot/var/log/named/security.log" versions 2 size 200m;
    severity dynamic;
    print-time yes;
  };
  category default { default_file; };
  category security { security_file; };
  category resolver { resolver_file; };
  category queries { queries_file; }
};
```
Sylhet Server - quagga & bgp

Configuring zebra.conf

[root@syl-anycast-dns quagga]# # vim /etc/quagga/zebra.conf

hostname sylt-anycast-dns.link3.net
!
enable password NothingToSay
!
interface eth0
ip address 192.168.0.232/30
!
interface lo:0
ip address 179.200.0.254/32
!
interface lo
!
line vty
!
Configuring bgpd.conf

```
[root@syl-anycast-dns quagga]#  vim /etc/quagga/bgpd.conf
hostname sylt-anycast-dns.link3.net
password NothingToSay
log stdout
!
router bgp 65430
  network 179.200.0.254/32
  neighbor 192.168.0.233 remote-as 23688
  neighbor 192.168.0.233 description BTS
  neighbor 192.168.0.233 activate
  neighbor 192.168.0.233 next-hop-self
  neighbor 192.168.0.233 remove-private-AS
  neighbor 192.168.0.233 soft-reconfiguration inbound
  neighbor 192.168.0.233 prefix-list anycast out
  neighbor 192.168.0.233 prefix-list default in
!
ip prefix-list default seq 15 permit 0.0.0.0/0
ip prefix-list anycast seq 5 permit 179.200.0.254/32
```
<table>
<thead>
<tr>
<th>Sylhet Router - announcing route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring BGP from router</td>
</tr>
<tr>
<td>router bgp 23688</td>
</tr>
<tr>
<td>network 192.168.0.234 mask 255.255.255.252</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 remote-as 65430</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 description Sylt-DNS_Anycast-SERVER</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 activate</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 next-hop-self</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 default-originate</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 remove-private-as</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 soft-reconfiguration inbound</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 prefix-list anycast-DNS-in in</td>
</tr>
<tr>
<td>neighbor 192.168.0.234 prefix-list default out</td>
</tr>
<tr>
<td>ip prefix-list anycast-DNS-in seq 10 permit 179.200.0.254/32</td>
</tr>
<tr>
<td>ip prefix-list default seq 5 permit 0.0.0.0/0</td>
</tr>
</tbody>
</table>
Performance and security tuning
do's & don’t
Performance tuning

• Checked the System –
 • # /sbin/sysctl net.netfilter.nf_conntrack_count
 net.netfilter.nf_conntrack_count = 262144

• Changed it –
 • # sysctl -w net.netfilter.nf_conntrack_max=524288
Security Measures – that has been taken

- Install & Configure the named service with least privileges CHROOT
 - [root@bd-anycast-dns quagga]# cd /var/named/chroot/ && ls

 dev etc run usr var

- Hide the bind version
 - [root@bd-anycast-dns etc]# cat /var/named/chroot/etc/named.conf

 version "please don’t ask my name" ;

- Restrict queries
 - [root@bd-anycast-dns etc]# cat /var/named/chroot/etc/named.conf

 allow-query { localhost; 192.168.0.0/16; };
 allow-query-cache { localhost; 192.168.0.0/16; };
 allow-recursion { localhost; 192.168.0.0/16; };

- Named service was configured to Listen to only Anycast Address
 - [root@bd-anycast-dns etc]# cat /var/named/chroot/etc/named.conf

 listen-on port 53 { 127.0.0.1; 179.100.0.254; };
DNS service analysis
Success and Failure Ratio

Query Request 550,000/minute

- Success: 84.82%
- Failure: 15.18%
DNS Failure Reasons

15.06% Failure Ratio

- Non-Existent Domain Name: 80.99%
- No Response: 10.91%
- Server Failure: 4.55%
- Format Error: 3.53%
- Query Refused: 0.02%
DNS Resolution Time

- 0ms - 10ms
- 10ms - 20ms
- 20ms - 30ms
- 30ms above
Thank You!