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DISCLAIMER:
This talk is about work in progress. Completeness 
and accuracy aren't guaranteed beyond best effort
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Starting point

● Old hardware
● A lot of profitable legacy software
● Openstack + bare metal
● Working CI/CD
● Working configuration management
● Small infrastructure team
● Software is an essential business component, but our 

business is not software
● Developers are on call for production application issues
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Cloud considerations

● Scaling
– Cloud systems let you scale in smaller increments on demand

● Variability in demand
– Low variability in demand for computing resources supports staying in-house
– Highly variable systems benefit from moving to the cloud far more

● Legal issues
– Privacy regulations in the EU itself

● Also different laws between different EU countries

– Brexit

● Software design
– Observability must be built into the software
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Vendor Choices

● Already using Docker
● Already moving to microservices
● Moving from Mesos to Kubernetes was easy
● This made Google's Cloud offering a slightly better 

choice than Amazon
– Google being cheaper helped a bit

● Neither was cheaper than running our own hardware
– Savings mostly come from the lack of a dedicated operations 

group, and from being able to avoid some HA requirements 
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The technical research phase

● Lasted about half a year
● Focus on two main areas:

– How to manage infrastructure manually at the 
vendor

– Tooling and automation
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Why manual work?

● Familiarisation
– Terminology

● Concepts
● Discover limitations

– There are a lot of those
– Some more interesting than others (load balancing, 

IPv6, DNS, ...)
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Choosing automation tools

● Shell scripts
– Via gcloud + gsutil

● Ansible
– We had Ansible experience
– Built some systems with ansible
– Very limited in what it can do without using gcloud

● Puppet
– Was not a serious contender six months ago

● Terraform
– The best of the lot

● It has improved a lot since this slideset was first made



  

Configuration management

● Stateless systems implemented in a 12-factor 
style are best put in containers and managed 
via Kubernetes
– Alternatively, use what Google calls managed 

groups and spin up VMs automatically in case of 
crashes



  

Configuration management

● Stateless systems implemented in a 12-factor 
style are best put in containers and managed 
via Kubernetes
– Alternatively, use what Google calls managed 

groups and spin up VMs automatically in case of 
crashes

● We still need configuration management for 
systems which aren't in a container



  

Configuration management

● Stateless systems implemented in a 12-factor style are 
best put in containers and managed via Kubernetes
– Alternatively, use what Google calls managed groups and 

spin up VMs automatically in case of crashes

● We still need configuration management for systems 
which aren't in a container

● Puppet was the obvious choice, because we were 
already using it
– It doesn’t matter which specific tool you use, but use one.



  

Inventory

● There isn't a nice CMDB out there yet, which 
can automagically provision VMs in the cloud 
and provide information to config-mgmt and 
orchestration tools
– We currently hack our way around this by using 

tags and the Google API
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Moving into high speed

● One meeting
– Three people
– Thirty minutes

● Decided on goals for a proof of concept
– Complete automation
– Custom tooling around the application
– Fixed target application for a test deployment

● Took us about three months of full time effort to wrap 
up the PoC
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Tools of choice

● Terraform
– This is a pretty fast moving tool
– They have good documentation

● For some value of good.

– Getting your first bits and pieces working are harder than they 
should be, but the rest then follow pretty easily

● Puppet
– New Puppet repo, ignoring a lot of legacy.
– Jumped Puppet version
– Discarded large parts of the module approach recommended in 

Puppet documentation
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Terraform

● Base network project
– All network related things are done in this project

● Other projects use an instance group with a 
mostly standard template
– They reference network configs from the base 

project

● Google metadata is used to tie together Puppet 
and Terraform
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Shared backends

● We started with a simple backend for Terraform,  
with no remote state.
– This does not scale to many users, but for the initial proof 

of concept was useful.

● We then spent a few days very carefully refactoring 
this into per project state, with the shared state 
being remote in a cloud storage bucket.
– https://charity.wtf/2016/03/30/terraform-vpc-and-why-you-

want-a-tfstate-file-per-env/ is a pretty good horror story of 
what could go wrong



  

* Documentation
* API
* Stateful data
* IPv6
* Secrets
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Google Cloud Documentation

● Lags behind software
● Is often inconsistent
● This has not changed in about three years

– This is not limited to Google though.
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API

● Quite inconsistent in some regards
– Particularly about referencing other properties
– Name or reference?

● Needs actual examples
– A lot of examples

● This has not really improved since I first wrote this talk
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Stateful data

● There are no good answers for high availability
● Google offers multiple options for storage

– Some of these are more reliable than others
– But they are more complex to use
– Or involve code changes

● Maintenance can cause outages
– automatic failover for CloudSQL needs a whole zone to fail, so a 

maintenance can cause an unexpected outage

● You may need to run your own database systems for more 
reliable access to structured data
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IPv6

● Google does not put it's money where it's 
mouth is wrt IPv6
– IPv6 support is very limited in the compute 

environment

● We started off by routing IPv6 traffic to our 
loadbalancers in the legacy environment and 
then proxying to IPv4 in Google
– This is no longer needed
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Secrets

● If you have containers, Google supports encrypted secrets.

● Using Vault from Hashicorp looks like a good option, but you 
still need to code applications to use those secrets instead of 
reading from a config file

● Anything else which works with your configuration management 
system is a good idea (eyaml with Puppet, for example)

– You still have the problem of managing a few master 
encryption keys

● We tested hiera-vault, but performance was terrible



  

Loadbalancing

● Google’s load balancer offering is limited in 
some ways as compared to more advanced 
tools like F5s, etc

● We chose to replace the hardware LBs with 
simple IP based load balancer + nginx proxies
– Note that code which tracks IP addresses or does 

geolocation needs to change to handle this.
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Monitoring

● Stackdriver looks promising for log management
– It has quite a few retention limitations
– New pricing makes it cheaper to run an ELK stack, 

depending on log volume

● Stackdriver is a good replacement for the ELK 
stack, but not for high quality analytics/monitoring

● There isn't a really good alternative to running your 
own time-series database
– Especially if you use that data for alerting
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Legacy code

● Plan on migrating it wholesale
– Even if you plan to rewrite it

● Rewrites will take longer than you plan for

– Even your planned migrations will take longer than 
expected, because of environmental assumptions.

● This does not benefit from moving to the cloud
– You are just running it in an environment with 

different assumptions on latency and reliability



  

Spectre/Meltdown impact

● CPU utilisation doubles
– We are currently on rather over-provisioned 

hardware, so actual impact is minimal

● Anything which does a lot of system calls is 
slowed quite a bit
– Large data import went from 26 hours to 56
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Summary

● Cloud migration is a business decision, but remember that costs will 
probably increase
– Monitor your costs closely, you will discover a number of ways in which money is 

wasted in the cloud (debug logging, for example).

● Outsourcing your L1 operations team to people who do not care about 
your business needs still has the same problems as a decade or two ago

● Choosing which provider to go with often involves small differences based 
on your existing stack

● The tooling available is still very raw, and we are still discovering 
operational design patterns

● Migrating to the cloud may require a wholesale change in process
– If you are in a large ITIL shop, that will require a huge change.



  

?
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