

Going to the
CLOUD!

DISCLAIMER:
This talk is about work in progress. Completeness
and accuracy aren't guaranteed beyond best effort

Starting point

● Old hardware

Starting point

● Old hardware
● A lot of profitable legacy software

Starting point

● Old hardware
● A lot of profitable legacy software
● Openstack + bare metal

Starting point

● Old hardware
● A lot of profitable legacy software
● Openstack + bare metal
● Working CI/CD

Starting point

● Old hardware
● A lot of profitable legacy software
● Openstack + bare metal
● Working CI/CD
● Working configuration management

Starting point

● Old hardware
● A lot of profitable legacy software
● Openstack + bare metal
● Working CI/CD
● Working configuration management
● Small infrastructure team

Starting point

● Old hardware
● A lot of profitable legacy software
● Openstack + bare metal
● Working CI/CD
● Working configuration management
● Small infrastructure team
● Software is an essential business component, but

our business is not software

Starting point

● Old hardware
● A lot of profitable legacy software
● Openstack + bare metal
● Working CI/CD
● Working configuration management
● Small infrastructure team
● Software is an essential business component, but our

business is not software
● Developers are on call for production application issues

Cloud considerations

● Scaling
– Cloud systems let you scale in smaller increments

on demand

Cloud considerations

● Scaling
– Cloud systems let you scale in smaller increments

on demand

● Variability in demand
– Low variability in demand for computing resources

supports staying in-house
– Highly variable systems benefit from moving to the

cloud far more

Cloud considerations

● Scaling
– Cloud systems let you scale in smaller increments on demand

● Variability in demand
– Low variability in demand for computing resources supports

staying in-house
– Highly variable systems benefit from moving to the cloud far more

● Legal issues
– Privacy regulations in the EU itself

● Also different laws between different EU countries

– Brexit

Cloud considerations

● Scaling
– Cloud systems let you scale in smaller increments on demand

● Variability in demand
– Low variability in demand for computing resources supports staying in-house
– Highly variable systems benefit from moving to the cloud far more

● Legal issues
– Privacy regulations in the EU itself

● Also different laws between different EU countries

– Brexit

● Software design
– Observability must be built into the software

Vendor Choices

Vendor Choices

● Already using Docker

Vendor Choices

● Already using Docker
● Already moving to microservices

Vendor Choices

● Already using Docker
● Already moving to microservices
● Moving from Mesos to Kubernetes was easy

Vendor Choices

● Already using Docker
● Already moving to microservices
● Moving from Mesos to Kubernetes was easy
● This made Google's Cloud offering a slightly

better choice than Amazon
– Google being cheaper helped a bit

Vendor Choices

● Already using Docker
● Already moving to microservices
● Moving from Mesos to Kubernetes was easy
● This made Google's Cloud offering a slightly better

choice than Amazon
– Google being cheaper helped a bit

● Neither was cheaper than running our own hardware
– Savings mostly come from the lack of a dedicated operations

group, and from being able to avoid some HA requirements

The technical research phase

● Lasted about half a year

The technical research phase

● Lasted about half a year
● Focus on two main areas:

– How to manage infrastructure manually at the
vendor

– Tooling and automation

Why manual work?

● Familiarisation
– Terminology

Why manual work?

● Familiarisation
– Terminology

● Concepts

Why manual work?

● Familiarisation
– Terminology

● Concepts
● Discover limitations

– There are a lot of those
– Some more interesting than others (load balancing,

IPv6, DNS, ...)

Choosing automation tools

● Shell scripts
– Via gcloud + gsutil

Choosing automation tools

● Shell scripts
– Via gcloud + gsutil

● Ansible
– We had Ansible experience
– Built some systems with ansible
– Very limited in what it can do without using gcloud

Choosing automation tools

● Shell scripts
– Via gcloud + gsutil

● Ansible
– We had Ansible experience
– Built some systems with ansible
– Very limited in what it can do without using gcloud

● Puppet
– Was not a serious contender six months ago

Choosing automation tools

● Shell scripts
– Via gcloud + gsutil

● Ansible
– We had Ansible experience
– Built some systems with ansible
– Very limited in what it can do without using gcloud

● Puppet
– Was not a serious contender six months ago

● Terraform
– The best of the lot

● It has improved a lot since this slideset was first made

Configuration management

● Stateless systems implemented in a 12-factor
style are best put in containers and managed
via Kubernetes
– Alternatively, use what Google calls managed

groups and spin up VMs automatically in case of
crashes

Configuration management

● Stateless systems implemented in a 12-factor
style are best put in containers and managed
via Kubernetes
– Alternatively, use what Google calls managed

groups and spin up VMs automatically in case of
crashes

● We still need configuration management for
systems which aren't in a container

Configuration management

● Stateless systems implemented in a 12-factor style are
best put in containers and managed via Kubernetes
– Alternatively, use what Google calls managed groups and

spin up VMs automatically in case of crashes

● We still need configuration management for systems
which aren't in a container

● Puppet was the obvious choice, because we were
already using it
– It doesn’t matter which specific tool you use, but use one.

Inventory

● There isn't a nice CMDB out there yet, which
can automagically provision VMs in the cloud
and provide information to config-mgmt and
orchestration tools
– We currently hack our way around this by using

tags and the Google API

Moving into high speed

● One meeting
– Three people
– Thirty minutes

Moving into high speed

● One meeting
– Three people
– Thirty minutes

● Decided on goals for a proof of concept
– Complete automation
– Custom tooling around the application
– Fixed target application for a test deployment

Moving into high speed

● One meeting
– Three people
– Thirty minutes

● Decided on goals for a proof of concept
– Complete automation
– Custom tooling around the application
– Fixed target application for a test deployment

● Took us about three months of full time effort to wrap
up the PoC

Tools of choice

● Terraform
– This is a pretty fast moving tool
– They have good documentation

● For some value of good.

– Getting your first bits and pieces working are harder
than they should be, but the rest then follow pretty
easily

Tools of choice

● Terraform
– This is a pretty fast moving tool
– They have good documentation

● For some value of good.

– Getting your first bits and pieces working are harder than they
should be, but the rest then follow pretty easily

● Puppet
– New Puppet repo, ignoring a lot of legacy.
– Jumped Puppet version
– Discarded large parts of the module approach recommended in

Puppet documentation

Terraform

● Base network project
– All network related things are done in this project

Terraform

● Base network project
– All network related things are done in this project

● Other projects use instance groups with a
mostly standard template
– They reference network configs from the base

project

Terraform

● Base network project
– All network related things are done in this project

● Other projects use an instance group with a
mostly standard template
– They reference network configs from the base

project

● Google metadata is used to tie together Puppet
and Terraform

Shared backends

● We started with a simple backend for Terraform,
 with no remote state.
– This does not scale to many users, but for the initial

proof of concept was useful.

Shared backends

● We started with a simple backend for Terraform,
with no remote state.
– This does not scale to many users, but for the initial proof

of concept was useful.

● We then spent a few days very carefully refactoring
this into per project state, with the shared state
being remote in a cloud storage bucket.
– https://charity.wtf/2016/03/30/terraform-vpc-and-why-you-

want-a-tfstate-file-per-env/ is a pretty good horror story of
what could go wrong

* Documentation
* API
* Stateful data
* IPv6
* Secrets

Google Cloud Documentation

● Lags behind software

Google Cloud Documentation

● Lags behind software
● Is often inconsistent

Google Cloud Documentation

● Lags behind software
● Is often inconsistent
● This has not changed in about three years

– This is not limited to Google though.

API

● Quite inconsistent in some regards
– Particularly about referencing other properties
– Name or reference?

API

● Quite inconsistent in some regards
– Particularly about referencing other properties
– Name or reference?

● Needs actual examples
– A lot of examples

● This has not really improved since I first wrote this talk

Stateful data

● There are no good answers for high availability

Stateful data

● There are no good answers for high availability
● Google offers multiple options for storage

– Some of these are more reliable than others
– But they are more complex to use
– Or involve code changes

Stateful data

● There are no good answers for high availability
● Google offers multiple options for storage

– Some of these are more reliable than others
– But they are more complex to use
– Or involve code changes

● Maintenance can cause outages
– automatic failover for CloudSQL needs a whole zone to

fail, so a maintenance can cause an unexpected outage

Stateful data

● There are no good answers for high availability
● Google offers multiple options for storage

– Some of these are more reliable than others
– But they are more complex to use
– Or involve code changes

● Maintenance can cause outages
– automatic failover for CloudSQL needs a whole zone to fail, so a

maintenance can cause an unexpected outage

● You may need to run your own database systems for more
reliable access to structured data

IPv6

● Google does not put it's money where it's
mouth is wrt IPv6
– IPv6 support is very limited in the compute

environment

IPv6

● Google does not put it's money where it's
mouth is wrt IPv6
– IPv6 support is very limited in the compute

environment

● We started off by routing IPv6 traffic to our
loadbalancers in the legacy environment and
then proxying to IPv4 in Google
– This is no longer needed

Secrets

● If you have containers, Google supports encrypted secrets.

Secrets

● If you have containers, Google supports encrypted secrets.

● Using Vault from Hashicorp looks like a good option, but you
still need to code applications to use those secrets instead of
reading from a config file

Secrets

● If you have containers, Google supports encrypted secrets.

● Using Vault from Hashicorp looks like a good option, but you
still need to code applications to use those secrets instead of
reading from a config file

● Anything else which works with your configuration management
system is a good idea (eyaml with Puppet, for example)

– You still have the problem of managing a few master
encryption keys

Secrets

● If you have containers, Google supports encrypted secrets.

● Using Vault from Hashicorp looks like a good option, but you
still need to code applications to use those secrets instead of
reading from a config file

● Anything else which works with your configuration management
system is a good idea (eyaml with Puppet, for example)

– You still have the problem of managing a few master
encryption keys

● We tested hiera-vault, but performance was terrible

Loadbalancing

● Google’s load balancer offering is limited in
some ways as compared to more advanced
tools like F5s, etc

● We chose to replace the hardware LBs with
simple IP based load balancer + nginx proxies
– Note that code which tracks IP addresses or does

geolocation needs to change to handle this.

Monitoring

● Stackdriver looks promising for log
management
– It has quite a few retention limitations
– New pricing makes it cheaper to run an ELK stack,

depending on log volume

Monitoring

● Stackdriver looks promising for log
management
– It has quite a few retention limitations
– New pricing makes it cheaper to run an ELK stack,

depending on log volume

● Stackdriver is a good replacement for the ELK
stack, but not for high quality
analytics/monitoring

Monitoring

● Stackdriver looks promising for log management
– It has quite a few retention limitations
– New pricing makes it cheaper to run an ELK stack,

depending on log volume

● Stackdriver is a good replacement for the ELK
stack, but not for high quality analytics/monitoring

● There isn't a really good alternative to running your
own time-series database
– Especially if you use that data for alerting

Legacy code

● Plan on migrating it wholesale
– Even if you plan to rewrite it

● Rewrites will take longer than you plan for

– Even your planned migrations will take longer than
expected, because of environmental assumptions.

Legacy code

● Plan on migrating it wholesale
– Even if you plan to rewrite it

● Rewrites will take longer than you plan for

– Even your planned migrations will take longer than
expected, because of environmental assumptions.

● This does not benefit from moving to the cloud
– You are just running it in an environment with

different assumptions on latency and reliability

Spectre/Meltdown impact

● CPU utilisation doubles
– We are currently on rather over-provisioned

hardware, so actual impact is minimal

● Anything which does a lot of system calls is
slowed quite a bit
– Large data import went from 26 hours to 56

Summary

● Cloud migration is a business decision, but
remember that costs will probably increase
– Monitor your costs closely, you will discover a

number of ways in which money is wasted in the
cloud (debug logging, for example).

Summary

● Cloud migration is a business decision, but
remember that costs will probably increase
– Monitor your costs closely, you will discover a

number of ways in which money is wasted in the
cloud (debug logging, for example).

● Outsourcing your L1 operations team to people
who do not care about your business needs still
has the same problems as a decade or two ago

Summary

● Cloud migration is a business decision, but
remember that costs will probably increase
– Monitor your costs closely, you will discover a number of

ways in which money is wasted in the cloud (debug
logging, for example).

● Outsourcing your L1 operations team to people who
do not care about your business needs still has the
same problems as a decade or two ago

● Choosing which provider to go with often involves
small differences based on your existing stack

Summary

● Cloud migration is a business decision, but remember that
costs will probably increase
– Monitor your costs closely, you will discover a number of ways in

which money is wasted in the cloud (debug logging, for example).

● Outsourcing your L1 operations team to people who do not
care about your business needs still has the same problems
as a decade or two ago

● Choosing which provider to go with often involves small
differences based on your existing stack

● The tooling available is still very raw, and we are still
discovering operational design patterns

Summary

● Cloud migration is a business decision, but remember that costs will
probably increase
– Monitor your costs closely, you will discover a number of ways in which money is

wasted in the cloud (debug logging, for example).

● Outsourcing your L1 operations team to people who do not care about
your business needs still has the same problems as a decade or two ago

● Choosing which provider to go with often involves small differences based
on your existing stack

● The tooling available is still very raw, and we are still discovering
operational design patterns

● Migrating to the cloud may require a wholesale change in process
– If you are in a large ITIL shop, that will require a huge change.

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

