

Dimensioning the Anyhaul network for 5G

Impact of 5G on IP transport networks

- Paresh Khatri
- 2019

5G: Built to address new requirements

experience. "Simited >10 Gb/s 100 Mb/s Changes vs LTE Targets peak data rates whenever needed 10x data rates 20 Gb/s 10x-10.000x _ _ _ _ _ Extreme 100x Mobile more traffic 10x lower latency <1 ms Broadband more devices 7(л <1 ms 10x lower IoT power <10 µWh per tx M2M Massive Critical radio latency ultra low machine machine cost communication communication 5x energy efficiency <1 kWh/TB 10 e everything years' instant actio 3x spectral efficiency >10 bps/cell/Hz báttery life **Ultra Reliable, Low Latency Massive MTC Communication**, (mMTC) (uRRLC, cMTC)

Enhanced Mobile Broadband (eMBB)

MTC = Machine Type Communication

What makes 5G different ? (1)

Wider Spectrum Allocations

From 10s of MHz to 100s of MHz (even GHz)

mMIMO

Massive MIMO Beamforming

What makes 5G different ? (2)

Content Distribution (CUPS)

Control Plane Functions

Different 5G spectrum ranges for different use cases 3 key spectrum ranges have emerged

	Spectrum range	Bands	Coverage	Peak Data rates	Bandwidth	Use Cases
Cell range Data rate	Low band < 3 GHz	 600 MHz (n71) 700 MHz (n28) 900 MHz (n81) 1800 MHz (n80) 	• Deep indoor • >1 km	~100 Mbps	FDD 2x10 MHz	 Deep indoor coverage for e.g. MTC Supplementary UL eMBB coverage Coverage layer for MBB
	Mid-band 3 – 6 GHz	• 3.4-3.6 GHz (n78) • 3.6-3.8 GHz (n77) • 4.5-4.9 GHz (n79)	• Same grid as LTE1800 • ~1 km	~1 Gbps	TDD <100 MHz	 5G eMBB coverage on LTE grid Major commercial 5G launches are expected in this spectrum range (JPN, KRN, CHN, EUR)
	mmWaves > 24 GHz	 26 GHz (n257) 28 GHz (n258) 39 GHz (n260) 	 Hot spots Line of sight 100 m	~10 Gbps	TDD <1 GHz	 Extreme data rates for e.g. VR in local areas like stadiums Used in US due to lack of 3-6 GHz

Not just MIMO... massive MIMO

MIMO: Multiple Input, Multiple Output

- Spatial multiplexing technique that allows reuse of timeand frequency-domain resources within a single cell
- Multiple streams transmitted simultaneously. Theoretical throughput gain proportional to number of streams.
- 2x2 and 4x4 widely deployed for LTE

mMIMO: massive MIMO

- Extends the concept of MIMO to a larger number of transmitters and receivers (>=16 antenna elements).
- For low band, achieves higher data rates.
- For high bands, allows higher transmission distances.

Impact of wider channels Doing the numbers

Assumptions:

Configuration	Average Spectral Efficiency (bps/Hz)
Downlink 2x2 MIMO	3.69
Downlink 4x4 MIMO	6.00
# Downlink layers: 16 64T64R at base station	

Example:

Frequency Range:	3.5GHz		
Bandwidth:	100MHz		
Average Sector Throughput (2x2):	369Mbps		
Average Sector Throughput (4x4):	600Mbps		
Peak DL Throughput (2x2)	4875Mbps		
Peak DL Throughput (4x4)	9750Mbps		

Network Architecture options for 5G RAN

5G system architecture evolution

9

Cloud Native with Control and User Plane Separation

Distributed traffic injection

Traffic no longer needs to be carried all the way to the core and is increasingly terminated closer to users.

NGMN Dimensioning Guideline Dimensioning Principles

Source: "Guidelines for LTE Backhaul Traffic Estimation" by NGMN Alliance (https://www.ngmn.org/fileadmin/user_upload/NGMN_Whitepaper_Guideline_for_LTE_Backhaul_Traffic_Estimation.pdf)

NGMN Dimensioning Guideline How do we then dimension ?

- Provisioning for a single cell:
 - should be based on the quiet time peak rate of that cell.
 - But, when provisioning for a multi-sector base station, it is unlikely that the quiet time peaks will co-incide. The busy time mean, however, will occur in all cells simultaneously
- Calculations are based on Peak and Busy Hour Mean values that are dependent on the type and amount of spectrum available.
- There are no absolute rules but heuristic rules can be selected and applied (depending on how peak and mean have been defined). Based on NGMN Alliance guidelines:

Lower Bound for N cells = Max (Peak, N x Busy Hour Mean)

Source: "Guidelines for LTE Backhaul Traffic Estimation" by NGMN Alliance (https://www.ngmn.org/fileadmin/user_upload/NGMN_Whitepaper_Guideline_for_LTE_Backhaul_Traffic_Estimation.pdf)

