NOKIA

EVPN

A tutorial

- Paresh Khatri
- 2019

Agenda

EVPN Background and Motivation In a nutshell **EVPN** Operations **Data Planes EVPN Use Cases/Applications Protocol details**

Agenda

EVPN Background and Motivation In a nutshell

EVPN Operations

Data Planes

EVPN Use Cases/Applications

Protocol details

Ethernet Services Technology Continues to Evolve Higher Speeds and Advanced Carrier-Grade Services

"The **widespread adoption of Ethernet L2VPN** services and the advent of **new applications** for the technology (e.g., data center interconnect) have culminated in a **new set of requirements** that are **not readily addressable** by the current Virtual Private LAN Service (VPLS) solution." — RFC7209

4 © Nokia 2019

EVPN and the opportunity to make it right

• What have we learnt about VPNs

- IP-VPN (RFC4364) is successfully deployed in SP networks without interop issues, easy to provision, supports allactive MH but only IP traffic
- VPLS (RFC4761/4762/6074) has control plane interop issues, provisioning vs efficiency trade-offs, flood-andlearn is not optimum, but works for any Ethernet traffic

• Why another VPN technology

- Cloud and NFV are shifting the way networks must behave
- EVPN is an Ethernet VPN technology (provides L2 and L3) that provides the required flexibility, it is future-proof and inherits over a decade of VPN experience

• Where can we use EVPN

- Cloud and virtualization services
- Data Center Interconnect (DCI)
- Integrated Layer-2 and Layer-3 VPN services
- Overlay technologies that simplify topologies and protocols

6 © Nokia 2019

Public

NOKIA

EVPN Requirements and Benefits

	VPN Requirements	VPLS	EVPN	What does it do for me?
Address Learning	Control Plane Address Learning in the Core	×	✓	Greater Scalability and Control
Provisioning	L3VPN-Like Operation	sc	\checkmark	Simpler Provisioning and Automation
	Auto Discovery and Configuration	PEs Only	\checkmark	Simpler Provisioning and Automation
Resiliency	Active-Standby Multihoming (Service-Based Load Balancing)	✓	\checkmark	Standby Redundancy
	All-Active Multihoming (Flow-Based Load Balancing)	×	\checkmark	Active Redundancy and Link Utilization
Services	VLAN Based Service Interfaces	\checkmark	\checkmark	Virtualization and Advanced Services
	VLAN Aware Bundling Service Interfaces	×	\checkmark	Virtualization and Advanced Services
	Inter-Subnet Forwarding	×	✓	Layer 2 and Layer 3 Over the Same Interface
Flow Optimization	ARP/ND Proxy	sc	\checkmark	Security and MAC Provisioning
	MAC Mobility	×	\checkmark	Virtualization and Advanced Services

7 © Nokia 2019

Overview: Next-Generation Ethernet VPN (EVPN)

- EVPN overview:
 - EVPN (RFC7432) is a BGP MPLS-Based Ethernet VPN, that uses a new MP-BGP address family to support MAC learning. It allows VPLS services to be operated as the L3VPN-like for better scalability and flexibility
 - EVPN is used to fill the gaps of other L2VPN technologies such as VPLS. The main objective of the EVPN is to build ELAN services in a similar way to RFC4364 IP-VPNs, while supporting MAC learning within the control plane (distributed by MP-BGP).
 - Multi-homing with all-active forwarding; Optimizing the delivery of multi-destination traffic (BUM)
 - Efficient hybrid services over a single VLAN; Delivering both L2 and L3 services over the same interface
 - EVPN used as control plane with multiple data plane encapsulations (VXLAN and MPLS)

EVPN key benefits

- Uniform control plane (MP-BGP) for L2/L3, p2p/p2mp service.
- L3VPN-like operation for scalability and control
- Seamless integration with existing L2 services.

- A/S, A/A Multi-homing with per flow redundancy and load balancing.
- Massive scale, with efficient BUM handling.
- Mass withdrawal
- More efficient hybrid service delivery over a single interface or VLAN

- MPLS or IP data plane encapsulation choices
- VXLAN or MPLSoUDP encapsulations enable EVPN over a simple IP network
- Simpler provisioning and management with a single VPN technology

- MAC/IP provisioning enables programmatic network control
- Consistent signaled FDB in control plane vs. flood-and-learn FDB in data plane
- Proxy ARP/ND to reduce/suppress BUM traffic
- Improved security (MAC/ARP/ND)

9 © Nokia 2019

Public

NOKIA

EVPN in the Standards Organizations

EVPN Application/Service	Standard document		
ELAN	RFC7432 (EVPN) RFC7623 (PBB-EVPN)		
ELINE	RFC8214 (EVPN-VPWS)		
ETREE	RFC8317 (EVPN and PBB-EVPN E-Tree)		
L3 VPN (Inter-subnet-forwarding)	draft-ietf-bess-evpn-inter-subnet-forwarding draft-ietf-bess-evpn-prefix-advertisement		
EVPN for DC	RFC8365 draft-ietf-bess-evpn-optimized-ir		
EVPN for DCI	draft-ietf-bess-dci-evpn-overlay draft-ietf-bess-evpn-vpls-seamless-integ		
New applications - Multi-homing improvements - Proxy-ARP/ND and security - BUM optimizations - EVPN to IP-VPN interworking - Mcast	draft-ietf-bess-evpn-df-election-framework draft-ietf-bess-evpn-pref-df draft-ietf-bess-evpn-proxy-arp-nd draft-ietf-bess-evpn-bum-procedure-updates draft-ietf-bess-evpn-igmp-mld-proxy draft-ietf-bess-evpn-irb-mcast draft-rabadan-sajassi-bess-evpn-ipvpn-interworking draft-ietf-bess-evpn-pim-proxy		

10 © Nokia 2019

Agenda

EVPN Background and Motivation In a nutshell EVPN Operations Data Planes EVPN Use Cases/Applications Protocol details

EVPN Control Plane Learning with MP-BGP

- Brings proven and inherent BGP control plane scalability to MAC routes
 - Consistent signaled FDB in any size network instead of flooding
 - Even more scalability and hierarchy with route reflectors
- BGP advertises MACs and IPs for next hop resolution with EVPN NLRI
 - AFI = 25 (L2VPN) and SAFI = 70 (EVPN)
 - Fully supports IPv4 and IPv6 in the control and data plane
- Offers greater control over MAC learning
 - What is signaled, from where and to whom
 - Ability to apply MAC learning policies
- Maintains virtualization and isolation of EVPN instances
- Enables traffic load balancing for multihomed CEs with ECMP MAC routes

MPLS Label2 (0 or 3 octets)

MAC Advertisement Route (Light Blue Fields are Optional)

EVPN Data Planes

One EVPN Control Plane with Multiple Data Plane Options

Terminology (from RFCs)

EVPN: Ethernet VPN

EVI: An EVPN instance spanning the Provider Edge (PE) devices participating in that EVPN.

MAC-VRF: A Virtual Routing and Forwarding table for Media Access Control (MAC) addresses on a PE.

Ethernet Segment (ES): When a customer site (device or network) is connected to one or more PEs via a set of Ethernet links, then that set of links is referred to as an 'Ethernet segment'.

Ethernet Segment Identifier (ESI): A unique non-zero identifier that identifies an Ethernet segment is called an 'Ethernet Segment Identifier'.

Ethernet Tag: An Ethernet tag identifies a particular broadcast domain, e.g., a VLAN. An EVPN instance consists of one or more broadcast domains.

14 © Nokia 2019

Terminology (from RFCs)

Single-Active Redundancy Mode: When a device or a network is multihomed to a group of two or more PEs and when only a single PE in such a redundancy group can forward traffic to/from the multihomed device or network for a given VLAN, such multihoming is referred to as "Single-Active".

All-Active Redundancy Mode: When a device is multihomed to a group of two or more PEs and when all PEs in such redundancy group can forward traffic to/from the multihomed device or network for a given VLAN, such multihoming is referred to as "All-Active".

15 © Nokia 2019

EVPN fundamental concepts

The three all-active MH challenges solved... by EVPN

The DF election avoids duplicate BUM flooding to all-active CEs

- PE1/PE2 advertise their ESI
- EVPN elects a DF per ESI per service
- DF is responsible for BUM flooding into the Ethernet Segment

Split-horizon ensures that BUM traffic sent to the non-DF is not replicated back to the ESI

- The DF signals an ESI label that the non-DF uses to send BUM traffic to the DF
- The DF uses the ESI label to suppress the BUM to the ESI identified by the label

Aliasing allows load-balancing to the PEs part of the ESI

- EVPN advertises what PEs are part of the ESI
- PE3 does ECMP to all the ESI owners

EVPN supports MAC mobility, duplication and protection

A MAC advertised by two PEs using the same ESI is interpreted by the remote PEs as a multihomed MAC

- This function is used for aliasing
- It can also be used for "anycast" forwarding (if ecmp=1)

A MAC advertised as protected will not be overridden by the default PEs, and offending packets will be dropped

A MAC advertised by two PEs using different ESI is interpreted as mobility (until a threshold is reached)

- A SEQ number is incremented each time the MAC is advertised from a different ESI
- If MAC1 moves X times in Y minutes (configurable) macduplication is triggered

18 © Nokia 2019

Public

NOKIA

EVPN proxy-ARP/ND and unknown flooding suppression

ARP/ND flooding and unknown flooding is a security issue and scalability issue in large L2 networks - Especially in large DCs and IXP networks

EVPN can reduce/suppress unknown and ARP/ND flooding if all the hosts advertise their presence

- PEs build proxy-ARP/ND tables per EVI with MAC/IP info received from local snooped ARP/GARP/ND or EVPN or static entries
- PEs reply to ARP/ND requests/solicitation messages received on local ACs

EVPN provides integrated L2 and L3 forwarding

Asymmetric IRB model (draft-sajassi-l2vpn-evpn-inter-subnet-forwarding)

NOTE: MAC-VRF is an EVI instance in a given PE

Public

A customer (or tenant) is given:

- An EVI per subnet which exists in all the PEs in the network
- A VRF on each PE that has IRBs to all the MAC-VRFs for the customer and can forward traffic among all the subnets
- EVPN advertises the IRB MAC/IPs and learnt host MAC/IPs

When a host sends traffic to a remote subnet:

At the ingress PE

-

- FDB lookup yields IRB interface
- Routing/ARP lookup yields local EVI and remote MAC/PE
- At the egress PE
 - Only FDB lookup is required

EVPN provides integrated L2 and L3 forwarding

Symmetric IRB model (draft-rabadan-l2vpn-evpn-prefix-advertisement)

A customer (or tenant) is given:

- An EVI per subnet which exists ONLY where there are hosts for that subnet
- A VRF on each PE that has IRBs to the local MAC-VRFs and a EVPN-tunnel IRB (no IP)
- Host MAC/IPs in one EVI are not imported by the remote PEs if the EVI is not local
- EVPN advertises IP prefixes that are imported in the VRF routing table

When a host sends traffic to a remote subnet:

- At the ingress PE
 - FDB lookup yields IRB interface
 - Routing lookup yields remote PE and MAC DA
- At the egress PE
 - Routing/ARP lookup yields MAC and local EVI
 - FDB lookup yields the local AC

The symmetric model saves ARP and FDB entries

EVPN Service Interfaces Overview

	VLAN Based Service Interface	VLAN Bundle Service Interface	VLAN Aware Bundle Service Interface
Service Interface Diagram	VID11 EVI 1 VID 12 VID 21 EVI 2 VID 22 VID 31 EVI 3 VID 32 VID 41 EVI 4 VID 42	VID 11Bridge Domain 1VID 11VID 21EVI 1VID 21VID 31VID 41VID 41	VID 11Bridge Domain 1VID 12VID 21EVI 1VID 22VID 31Bridge Domain 4VID 32VID 41Bridge Domain 4VID 42
Mapping Between VLAN ID and EVI	1:1	N:1	N:1
Broadcast Domains (VLAN) per EVI	Single	Multiple	Multiple
Bridge Domains per EVI	Single	Single	Multiple
Overlapping MACs Across VLANs	\checkmark	×	\checkmark
VLAN Translation	✓	×	✓

Agenda

EVPN Background and Motivation

In a nutshell

EVPN Operations

Data Planes

EVPN Use Cases/Applications

Protocol details

E-VPN in three concepts and three operational properties

E-VPN provides an IP-VPN-like operation with flow-based multi-homing/multi-pathing, optimal multi-destination and fast convergence

24 © Nokia 2019

Public

NOKIA

A key E-VPN concept: Ethernet Segments and ESIs

NOKIA

E-VPN optimal forwarding for all-active MH is provided by the Designated Forwarder (DF), split-horizon and aliasing functions

26 © Nokia 2019

ALIASING

EVPN Operation

All-Active Multihoming and Designated Forwarder Election

- Avoids duplicate BUM flooding to all-active CEs
- PEs connected to multihomed CEs know about each other through ESI routes
- Elects a designated forwarder (DF) responsible for BUM flooding to the Ethernet segment
- Non-DF PEs block BUM flooding to the CE

- Flexible DF election and functionality
 - Same DF for all ESIs
 - Different DF per ESI
- Unicast still follows all-active paths

EVPN Operation

All-Active Multihoming and Split Horizon

- Ensures that BUM traffic from an ESI is not replicated back to the same ESI to an all-active CE
- PE advertises a split horizon label for each all-active Ethernet segment
- When an ingress PE floods BUM traffic, it pushes the split horizon label to identify the source Ethernet segment
- Egress PEs use this label for split horizon filtering and drop packets with the label destined to the Ethernet segment
- Implicit split horizon for core, since PEs won't flood received BUM traffic back into core

28 © Nokia 2019

EVPN Operation ARP/ND Proxy and Unknown Unicast Flooding Suppression

- ARP/ND is a security issue and a scalability issue in large networks
 - Unknown unicast traffic levels, especially in large data center and IXP networks
- We really don't need it anymore in orchestrated or provisioned networks where all MACs/IPs are known
- EVPN can reduce or suppress unknown unicast flooding since all active MACs and IPs are advertised by PEs
 - PEs proxy ARP/ND based on MAC route table to CEs
 - ARP/ND/DHCP snooping optimizes and reduces unknown unicast flooding, useful in dynamic data center networks
 - Provisioning MAC addresses can reduce or eliminate unknown unicast flooding entirely
 - Can disable learning and snooping for programmatic network control

29 © Nokia 2019

EVPN Operation Aliasing

- Provides load-balancing to all-active CE when the MAC address is only learned by one PE
 - First MAC learning by PE is usually from a Layer 2 broadcast (ARP/ND/DHCP)
 - Broadcasts are sent on the primary link in a LAG
 - Can have periods of time when the MAC is only learned by the PE connected to the primary link
- PEs advertise the ESI in MAC routes with all-active mode
- Remote PEs can load-balance traffic across all PEs advertising the same ESI
 - Multipathing to CE always works, does not depend on random learning situations or hashing at CE
- Can also be used for a backup path in single-active mode with a standby link
- 30 © Nokia 2019

EVPN Operation MAC Mobility

- MAC addresses may move between ESIs
- If local learning is used, the PE may not detect that a MAC address has moved and won't send a withdraw for it
- New PE sends a new MAC route
- Now there are two routes for the MAC address: an old wrong one and a new correct one

- Each MAC is advertised with a MAC mobility sequence number in an extended community with the MAC route
 - PE selects the MAC route with the highest sequence number
 - Triggers withdraw from PE advertising MAC route with the lower sequence number
 - Lowest PE IP address is used as the tie breaker if the sequence number is the same

EVPN Operation MAC Duplication

- In certain bad situations, the same MAC could be
 learned by two PEs
 - MAC duplication
 - Rapid movement
 - Loops
- MAC duplication detection mechanism uses a configurable timer and move counter
 - Provides per-MAC duplication control vs. per-port control in Layer 2 bridging

- If five (N) moves (M) are detected in 180 s, then the
 MAC is considered duplicated (default timers)
- PEs stop advertising its route, PEs will use the route with the highest sequence number for forwarding
- Condition can be cleared manually or by implementing a retry timer to clear it automagically

EVPN Operation MAC Mass-withdraw

- Provides rapid convergence when a link failure affects many MAC addresses
- PEs advertise two routes
 - MAC/IP address and its ESI
 - Connectivity to ESIs
- If a failure affects an ESI, the PE simply withdraws the route for the ESI

- Remote PEs remove failed PE from the path for all MAC addresses associated with an ESI
- Functions as a MAC mass-withdraw and speeds convergence during link failures
- No need to wait for individual MAC addresses to be withdrawn

EVPN Operation

Default Gateway Inter-Subnet Forwarding

- EVPN supports inter-subnet forwarding when IP routing is required
- No additional separate L3VPN functionality is needed, uses EVPN default gateway
- One or more PEs is configured as the default gateway, 0.0.0.0 or :: MAC route is advertised with default gateway extended community
- Local PEs respond to ARP/ND requests for default gateway
- Enables efficient routing at local PE
- Avoids tromboning traffic across remote PEs to be routed after a MAC moves, if all default gateways use the same MAC address

35 © Nokia 2019

Public

NOKIA

E-VPN usage example

NOKIA

E-VPN service startup procedure

A-D routes per ESI for split-horizon and fast convergence procedures

E-VPN service startup procedure

A-D routes per <ESI, EVI> for aliasing procedures

- All the PEs import the received routes based on the RT (RT1)

procedures

NOKIA

NOKIA

41 © Nokia 2019

E-VPN packet walkthrough

E-VPN packet walkthrough

Unicast packet CE3 →CE2

Functional

procedures

NOKIA

44 © Nokia 2019

Public

E-VPN traffic flow optimization procedures

Flooding suppression, inter-subnet forwarding and mac-mobility

Unknown unicast flooding suppression

- EVPN allows flooding suppression in certain networks (DC)

- Assuming VMs always signal its presence (GARP/DHCP) unknown flooding can be suppressed since all the active MACs and IPs will always be distributed by EVPN

Inter-subnet forwarding

- EVPN and IRB to a local VRF allow for routing to hosts in other subnets

- Only EVPN (advertising MACs/IPs) is required, no IP-VPN is needed
- EVPN updates populate VRF routing table
- IRB interfaces advertised in EVPN with default GW ext-comm

- Each MAC is advertised along with a mac-mobility ext-comm, including a sequence number
- A PE selects the MAC route with the highest SEQ. number

45 © Nokia 2019

Public

Agenda

EVPN Background and Motivation In a nutshell **EVPN** Operations **Data Planes EVPN Use Cases/Applications Protocol details**

EVPN abstracts the control plane

To support current and future data plane encapsulations

- EVPN-MPLS /EVPN-PBB
 - Uses a 20-bit MPLS service label as MAC-VRF de-multiplexer
 - Transport tunnel: RSVP/LDP/BGP/SR-ISIS/SR-OSPF
 - Takes advantage of all the underlying MPLS capabilities (FRR, TE, etc.)
- EVPN-VXLAN
 - Typically used in Datacenter (Nuage)
 - Uses a 24-bit VNI as MAC-VRF de-multiplexer
 - The VNI is encapsulated as part of the VXLAN header
 - VXLAN is transported over UDP/IP
 - Takes full advantage of the VXLAN simplicity and transparency

EVPN Multiprotocol Label Switching (MPLS) Data Plane RFC7432 (EVPN-MPLS)

- EVPN over an MPLS data plane is the original EVPN solution in the base specification
- Requires IGP, RSVP-TE or LDP, BGP
- No pseudowires
- MPLS runs in the core network's control plane and data plane

Public

• Core network supports all the MPLS features we know and love, since EVPN uses MPLS as the data plane (TE, FRR, ...)

EVPN for MPLS Tunnels in ELAN Services

EVPN Instance (EVI) Identifies a VPN

MAC-VRF Virtual Routing Forwarding table for MACs

NOKIA

Ethernet Tag Control Plane Learning Broadcast or Bridge Domain in the EVI PEs Advertise MAC Addresses and Next Hops From Connected CEs Using MP-BGP **Single-Active Mode** Multihomed, One Active PE Data/Mgmt Plane Learning Dynamic or Static (Provisioned) **EVI 1** EVI 1 PE5 PE6 **All-Active Mode** Multihomed, Two or More MAC/IP Active PEs PE1 PE3 VM EVI 1 CE **EVI 1** MAC/IP BGP **Ethernet Segment Identifier** LAG update PE2 PE4 (ESI) Link(s) that Connect the CE Customer Edge (CE) **Data Plane Encapsulation** to PEs (ESIs are Unique Across Host, VM, Router or Switch MPLS tunnel : RSVP-TE / LDP / SR the Network)

49 © Nokia 2019

Provider Backbone Bridges (PBB) EVPN Data Plane RFC7623 (PBB-EVPN)

- PBB-EVPN combines IEEE 802.1ah PBB with EVPN
- PEs are PBB Backbone Edge Bridges (BEB)
- Reduces number of MACs in EVPN by aggregating customer MACs with backbone MACs
 - Same concept as route aggregation in IP

- Scales EVPN networks to a very large number of MACs
 - PEs only advertise backbone MACs with BGP
 - Customer MAC and backbone MAC mapping is learned in the data plane
 - Useful for providing services to networks where the MACs are not under your control
- MPLS runs in the control plane and data plane

50 © Nokia 2019

EVPN for PBB for large L2 networks (RFC 7623)

PBB-EVPN combines 802.1ah and EVPN

- PEs have I-components mapped to Bcomponents (EVIs)
- BGP-EVPN is enabled in the B-VPLS domain
- Reduces the number of MACs in EVPN by aggregating CMACs with BMACs

Used to scale very large layer-2 EVPN networks

- Per-ISID flooding trees are supported
- The B-component EVI uses MPLS data plane

EVPN Virtual Extensible LAN (VXLAN) Data Plane RFC8365 (EVPN-VXLAN)

- EVPN-VXLAN uses EVPN over a VXLAN data plane
 - VXLAN is typically used for data center extension over WAN
 - Can also be used as an overlay in any IP network for IP/Ethernet services
 - Useful when MPLS is unavailable or unwanted
 - Alternative to NVGRE or MPLSoGRE (NVO3)
 - PIM is not needed with ingress BUM replication

- VXLAN provides the Layer 2 overlay over IP
 - IP reachability is required between PEs
 - EVPN uses BGP control plane for MAC route advertisements
 - VXLAN data plane uses UDP to encapsulate the VXLAN header and Layer 2 frame
- Provides all the benefits of EVPN for DCI and virtualized networks

VXLAN (Virtual eXtended LAN): The DATA PLANE standard for DC IP fabrics

- VXLAN encapsulates Ethernet in IP over a logic L3 tunnel
 - Runs over IPv4 (or IPv6)
 - Uses UDP, source port is a hash of MAC or IPs to provide load balancing entropy
 - 8 byte VXLAN header provides 24 bit VXLAN Network Identifier (VNI) and flags
 - Total encapsulation overhead is ~50 bytes
- VXLAN is routable with IP, so the underlay network may be any network that uses existing resiliency and load balancing mechanisms
 - ECMP
 - IGPs/BGP
 - IP FRR
- VXLAN tunnel endpoints can be on network equipment or computing infrastructure
 - Deliver a VPN straight to a hypervisor

VXLAN Overlay Tunnels Frame Format

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u>	o <u>C</u> apture	<u>A</u> nalyze	<u>S</u> tatistics	Telephon <u>y</u>	<u>T</u> ools	<u>I</u> nternals	<u>H</u> elp							
0 0		1 E		2	् 🔶 🐗)	7 2		, O		2 🖻	M	2	% 🕱	
ter: Expression Clear Apply Save															
	Time	Source			Destination	n		Protocol		L	ength	Info			
19	2.30220	24 50.0	1 116		30.0.1	115		TCMP			110	ECHO	(ping)	request	
20	2.30228	298 30.0	1 115		30.0.1	116		TCMP			160	ECHO	(ping)	request	id Oxe
21	2.3020/	030.0	1 115		30.0.1	.110		TCMP			110	ECHO	(ping)	repty	id Oxe
22	2.30208	582 50.0	.1.115		30.0.1	.110		ICMP			110	ECHO	(pring)	герту	
				4											<u> </u>
Frame	20: 16	0 bytes	on wire	e (1280	bits),	160 b	ytes ca	aptured	(1280	bits)	on ir	iterfa	ice O		
Ethernet II, Src: Alcatelc1:d6:cc (24:af:4a:c1:d6:cc), Dst: Alcatel32:e3:82 (00:25:ba:32:e3:82)															
802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 889															
802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 1															
Inter	net Pro	tocol V	ersion 4	4, Src:	1.1.1.1	16 (1	.1.1.11	.6), Ds1	:: 1.1.	.1.115	(1.1.	1.115	5)		
User	Datagra	m Proto	col, Sro	c Port:	44739 (44739), Dst	Port: 4	4789 (4	4789)					
Sou	rce Por	t: 44739	9 (44739	9)											
Des	tinatio	n Port:	4789 (4	4789)											
Len	gth: 11	4													
🗄 Che	cksum:	0x0000	(none)												
[Stream index: 2]															
Virtu	al eXte	nsible I	Local Ar	rea Neti	work										
🗄 Fla	gs: 0x0	8													
Res	erved:	0x00000	0												
VXLAN Network Identifier (VNI): 1153000															
Res	erved:	0													
Ether	net II,	Src: A	lcatelL_	_8d:a6:1	1a (8c:9	0:d3:	8d:a6:1	la), Dst	t: Alca	ateld	6:e1:	79 (0	0:21:0	5:d6:e1:7	9)
Internet Protocol Version 4, Src: 30.0.1.116 (30.0.1.116), Dst: 30.0.1.115 (30.0.1.115)															
Internet Control Message Protocol															
000 0	0.25 ba	22 62 0	r 10 01	E /a ci		81 00	03 70	¥ 2	¢						
010 8	1 00 00	01 08 (32 24 al	00.80		40 00	ff 11	. /0. 2.	.E	. I@.					
020 7	4 02 01	01 01 7	74 01 01	01 7	3 ae c <u>3</u> :	12 b5	00 72	t	ts	5 <u>r</u>					
030 0	0 00 08	00 00 0	0 11 07	7 68 00	0 0 21	05 d6	o1 70								
040 8	0 00 00	00,00,0	10 II <u>31</u>	20 00	00 21	05 40	CT / 2		•••• ••	!y					
040	c 90 d3	8d a6 1	a 08 00) 45 00	0 00 54	82 af	00 00		E.	. ! y					•

54 © Nokia 2019 Public

NOKIA

- U ×

Agenda

EVPN Background and Motivation In a nutshell EVPN Operations Data Planes EVPN Use Cases/Applications Protocol details

Public

Public

NOKIA

EVPN for Carrier Ethernet

Driven by multi-homing, simplification and advanced features

(PBB)EVPN-MPLS (RFC7432/7623)

- Uniform control plane
- A/A, A/S Multi-homing
- Load-balancing
- BUM reduction/suppression
- Security and loop protection
- Inter-As option-B/C for massive scale
- PBB: control plane simplification / MAC reduction

EVPN-VPWS (RFC8214)

- Uniform control plane
- A/A, A/S Multi-homing

(PBB)EVPN-E-Tree (RFC8317)

- Leaf-to-leaf Unicast traffic filtered at ingress
- Eefficiency, simplification and multi-homing
- PBB: control plane simplification / MAC reduction

EVPN and Cloud Integration

EVPN VXLAN is the de-facto standard for Cloud and DCI

- auto-discovery of remote VTEPs via IMEA route
- Distribution of MAC/IP

Advance options:

- Distribution of IP-Prefixes for inter-subnet forwrding
- MAC protection, duplication detection, loop protection
- Proxy-ARP/ND
- Service-chaining using MAC/IP routes, ESI

Multicast efficiency

- Ingress replication (may be a challenge on VM for multicast)
- Assisted-Replication (draft-ietf-bess-evpn-optimized-ir)
 - Help software-based PE and NVEs with low-performance replication capabilities

DC Gateway

- Translation between VXLAN and EVPN-VPLS, IP prefixes and IPVPN
- Demarcation: QoS, Security, aggregation, isolation

DC Gateway-less

- Inter-AS opt B or NHS RR and MPLSoUDP (NFIX), Inter/Intra-As opt C
- ASBR/ABR terminate DC tunnel, swap service label and push MPLS stack for WAN tunnel (and vice versa)
- Scalable DCI without service instantiation on the DC GW

Data Center use-case

Cloud computing and NFV are shifting DC networks to SDN-based DCs where only VXLAN and EVPN provide the required capabilities - Legacy DC networks can't cope with 10,000s of dynamic hosts/VMs

Required EVPN features

- EVPN provides L2/L3 connectivity for 1,000s of tenants in the DC
- The IP fabric can also be extended to the WAN for DC interconnect
- MAC mobility, proxy-ARP/ND, MAC protection, unknown flooding suppression, inter-subnet forwarding

VXLAN data plane provides the required scalability, performance and simplicity

- De-facto standard with assisted hardware in servers
- ECMP and fast resiliency
- Loop-free forwarding for L2
- Shortest path between any 2 endpoints

60 © Nokia 2019

Public

NOKIA

Ethernet VPN (EVPN)

Peering Fabric Architecture for IXPs

- Layer 2 protocols and VPLS are popular architecture choices for IXP peering fabrics
- EVPN is an emerging technology that enables a new architecture for IXP peering fabrics with some advantages
 - Multihoming to different PEs
 - Manage and program all IP/MACs with local proxy from PEs
 - Simpler topology with VXLAN instead of MPLS with less protocols to manage
- Let's take a look at the EVPN technology and how it can be used as an IXP peering fabric architecture

Internet Exchange Points Static MAC/IP provisioning of the router interfaces for **Peering Fabric** maximum security Suppresses unknown and ARP/ND flooding Drops unknown source MACs MACs/IPs EVI **EVPN** required features L2 interconnection over a VXLAN or MPLS peering fabric MAC/IP Proxy-ARP/ND and unknown/ARP/ND IP or IP/MPLS suppression Proxy-MAC duplication, MAC protection **Core Network** ARP/ND Who has IP1? Anti-spoofing operation MAC1 has IP1 ARP Dynamic ARP/ND learning of proxy-ARP/ND entries for easy provisioning, minimum flooding and SPOOFER anti-spoofing monitoring Dynamic learning of ARP/ND entries is possible Anti-spoofing monitors hosts claiming the same IP If a duplicate is detected, an alarm is triggered and MAC/IPs put in hold-down mode An option to inject an anti-spoof mac is possible too NOKIA © Nokia 2019 Public

62

Internet Exchange Point Peering Fabric Peering Fabric Por IP/MPLS Core Network

- Provides Layer 2 interconnection over an EVPN peering fabric
 - IP/MPLS core network with MPLS data plane
 - IP core network with VXLAN data plane
- Supports single or all-active multihoming to the peering fabric VLAN
- Supports PNIs and/or other overlay VLANs

- Enables precise fine-grained control over MAC addresses
 - Static MAC provisioning and ARP/ND proxy from PEs can reduce or eliminate unknown unicast
 - Per-MAC loop control vs per-port or per-VLAN isolates potential loops
 - Works together with edge port hygiene features to provide a clean and secure peering fabric

- EVPN provides the technology for the peering fabric and MAC/IP management over the core
- Still need to use existing port security mechanisms and follow BCPs for port hygiene and allowed traffic
 - Typically allow IPv4, IPv6, ARP and block unwanted traffic types
 - MAC address locking
 - BUM control

Layer 2 or Layer 3 Data Center Interconnect

- Enables scalable Layer 2 or Layer 3 DCI services for virtualized data centers
- IP/MAC mobility for VMs that move between data centers
 - Faster moves while maintaining correct FDB on all routers
- Local IP gateway at each PE optimizes routing

- Provides all the benefits of EVPN for DCI and virtualized networks
 - No BUM for MAC learning
 - Integrated Layer 2 switching and Layer 3 routing over the same interface or VLAN

Overlay VPNs from Service Provider to Customer Layer 2 and Layer 3 Services

- EVPN provides Layer 2 and Layer 3 services
 - Single interface, single VLAN to customer
 - One VPN technology for both services, no need for multiple VPN protocols
 - All-active or single-active PE to CE connection

- EVPN service can be provided over any core network
 - MPLS core can use EVPN
 - IP core can use EVPN-VXLAN

Overlay VPNs over IP Flexible Layer 2 and Layer 3 VPN Solution BGP Control Plane

- EVPN-VXLAN works over any IP service to provide a flexible Layer 2 and Layer 3 VPN
- Just requires IP connectivity between sites, no MPLS or any special configuration by IP service provider
 - Service provider network is transparent to EVPN
 - EVPN overlay is transparent to service providers

- VPN routing between endpoints can be controlled with BGP and routing policies to service providers
- Routing and MAC/IP advertisement within EVPN controlled via IBGP between PEs

Agenda

EVPN Background and Motivation In a nutshell EVPN Operations Data Planes EVPN Use Cases/Applications Protocol details

Public

THE MP-BGP EVPN ROUTES

MAC and Inclusive Multicast routes (single home)

Inclusive Multicast Eth-Tag route (IMET) (type 3)

- Auto-discovers the EVPN 'bindings' from a MAC-VRF
- Advertises the provider tunnel that the PE will use for BUM
 - Ingress Replication (IR)
 - P2MP tunnel

© Nokia 2019 69

Public

MAC/IP Advertisement route (type 2)

Advertises learned MACs and (optionally) IP

• MAC/IPs populate proxy-ARP tables

THE BASIC MP-BGP EVPN ROUTES: Type 2 and 3 RFC7432 Non-multi-homing routes

MAC Mobility extended community

Allows MAC mobility and MAC protection

0x06 0x03 Flags Rsvd Sequence Number

MAC/IP Advertisement route

EVPN NLRI encoded in MP_REACH_NLRI/ MP_UNREACH_NLRI AFI=25 SAFI=70 (EVPN)

Route Type (1 byte) Length (1 byte) Route Type specific (variable)

Eth-tag Only in VLAN-aware bundle services

MAC Address

Used to populate remote FDBs Length always 48

IP Address

Used to populate remote proxy-arp/nd tables (also host routes if label2 is present) Length always 32 or 128

PMSI Tunnel Attribute (PTA)

Indicates tunnel type and ID for BUM traffic

Inclusive Multicast Ethernet Tag Route (IMET)

Route Distinguisher(8 byte)

Ethernet Tag ID (4 bytes)

IP Address Length (1 byte)

Originating Router's IP addr (4 or 16 bytes)

70 © Nokia 2019

BGP-EVPN Control Plane: Route Type 2 and 3

- Route Type 3: Inclusive Multicast Ethernet Tag Route ٠
- Route Type 2: MAC / IP Advertisement Route •

Inclusive Multicast Ethernet Tag Route

the BUM tree

Auto-discovers the VXLAN 'binds' for a service and set up

BGP-EVPN Control Plane: Route Type 2 and 3

"Peer 1: 1.1.1.12: UPDATE Peer 1: 1.1.1.12 - Received BGP UPDATE: Withdrawn Length = 0 Total Path Attr Length = 88 Flag: 0x90 Type: 14 Len: 44 Multiprotocol Reachable NLRI: Address Family EVPN NextHop len 4 NextHop 1.1.1.12 Type: EVPN-MAC Len: 33 RD: 1.1.1.12:10 ESI: ESI-0, tag: 0, mac len: 48 mac: 52:54:00:d5:ef:60, IP len: 0, IP: NULL, label1: 10 Flag: 0x40 Type: 1 Len: 1 Origin: 0 Flag: 0x40 Type: 2 Len: 0 AS Path: Flag: 0x80 Type: 4 Len: 4 MED: 0 Flag: 0x40 Type: 5 Len: 4 Local Preference: 100 Flag: 0xc0 Type: 16 Len: 16 Extended Community: target:65100:10 bgp-tunnel-encap:VXLAN

Peer 1: 1.1.1.12 - Send BGP UPDATE: Withdrawn Length = 0 Total Path Attr Length = 84 Flag: 0x90 Type: 14 Len: 28 Multiprotocol Reachable NLRI: Address Family EVPN NextHop len 4 NextHop 1.1.1.11 Type: EVPN-Incl-mcast Len: 17 RD: 1.1.1.11:10, tag: 0, orig addr len: 32 , orig addr: 1.1.1.11 Flag: 0x40 Type: 1 Len: 1 Origin: 0 Flag: 0x40 Type: 2 Len: 0 AS Path: Flag: 0x80 Type: 4 Len: 4 MED: 0 Flag: 0x40 Type: 5 Len: 4 Local Preference: 100 Flag: 0xc0 Type: 16 Len: 16 Extended Community: target:65100:10 bgp-tunnel-encap:VXLAN Flag: 0xc0 Type: 22 Len: 9 PMSI: **Tunnel-type Ingress Replication (6)** Flags: (0x0)[Type: None BM: 0 U: 0 Leaf: not required] MPLS Label 10 Tunnel-Endpoint 1.1.1.11

NOKIA
BGP-EVPN: BGP Tunnel Encapsulation Extended Community

- The following routes are sent with the BGP Tunnel Encapsulation Extended Community (RFC5512):
 - \rightarrow Inclusive Multicast Ethernet Tag routes.
 - \rightarrow MAC / IP Advertisement routes.
 - \rightarrow AD per-EVI routes.
- The Ethernet-Segment and the AD per-ESI routes don't include this extended community.

BGP-EVPN Control Plane: Route Type 5

- Defined in draft-ietf-bess-evpn-prefix-advertisement
- Route Type 5: IP Prefix Route: Route-type 5 is used when IP prefixes advertisement is required in EVPN with an IRB backhaul R-VPLS + VPRN services
- GW IP address: Can carry two different values:

 \rightarrow If different from zero, the route-type 5 will carry the primary IP interface address of the VPRN behind which the IP prefix is known. This is the case for the regular IRB backhaul R-VPLS model.

 \rightarrow If 0.0.0, the route-type 5 will be sent along with a MAC next-hop extended community that will carry the VPRN interface MAC address. This is the case for the EVPN tunnel R-VPLS model.

	IP Prefix Route
	Route Distinguisher (8 bytes)
-	Ethernet Segment ID (10 bytes)
	Ethernet Tag ID (4 bytes) = 0
-	IP Address Length (1 byte)
	IP Address (4 or 16 bytes)
	GW IP Address (4 or 16 bytes)
	MPLS Label (3 bytes) = VNI

Peer 1: 1.1.1.12 - Send BGP UPDATE: Withdrawn Length = 0 Total Path Attr Length = 133 Flag: 0x90 Type: 14 Len: 81 Multiprotocol Reachable NLRI: Address Family EVPN NextHop len 4 NextHop 1.1.1.11 Type: EVPN-IP-Prefix Len: 34 RD: 65100:20, tag: 0, ip prefix: 172.16.20. 1/32 gw ip 0.0.0.0 Label: 20 Type: EVPN-IP-Prefix Len: 34 RD: 65100:20, tag: 0, ip prefix: 172.16.20. 0/24 gw ip 0.0.0.0 Label: 20 Flag: 0x40 Type: 1 Len: 1 Origin: 0 Flag: 0x40 Type: 2 Len: 0 AS Path: Flag: 0x80 Type: 4 Len: 4 MED: 0 Flag: 0x40 Type: 5 Len: 4 Local Preference: 100 Flag: 0xc0 Type: 16 Len: 24 Extended Community: target:65100:20 mac-nh:00:0b:ff:ff:ff:51 bgp-tunnel-encap:VXLAN

*A:>config>service>vpls# info allow-ip-int-bind bgp-evpn ip-route-advertisement vxlan no shutdown

74 © Nokia 2019

EVPN Multi-Homing Ethernet Segment (ES) Discovery and Designated Forwarder (DF) Election

ESI-12 is provisioned and advertised in an ES route

- PE5 and PE2 advertise ESI-12 route along with an auto-derived ES Import Route Target
- > PE5 and PE2 import each other's route because they have matching ES Import RT (ES is provisioned in them)
- > PE7 will ignore the route as it has no matching import RT (the ES is not provisioned in it)

The Multi-homing EVPN routes: Route Type 1 and 4 AD per-ESI, AD per-EVI and ES routes

NOKIA

76 © Nokia 2019

Public

ES Advertisement Discovery Route: Route Type 1 (EVPN-VPLS Multihoming)

• AD per-ESI routes will announce the ethernet-segment capabilities, including the mode (single-active or all-active) as well as the ESI label for split-horizon.

• AD per-EVI routes are advertised so that PE3 knows what services (EVIs) are associated with the ESI. These routes are used by PE3 for its aliasing procedures.

L.13 AS:65100 Local AS:65100		
c Routes	A:SR-3# show service id 1001 11-11-11	evp
ESI NextHop Label	BGP EVPN-MPLS Ethernet Seg	;me
11:11:11:11:11:11:11:11:11:11:11:11:11:	Eth Segld Num. M 11:11:11:11:11:11:11:11:11:11:11:11:11:	lacs 1 1
LABEL 0	Transport	
	1.1.1.12 262136 Idp	
	1.1.1.16 262136	

A:SR-3# show service id 1001 evpn-mpls esi 11-11-11-11-11-11-11-11-11
BGP EVPN-MPLS Ethernet Segment Dest
Eth SegId Num. Macs Last Change
11:11:11:11:11:11:11:11:11 1 09/06/2016 20:55:51
BGP EVPN-MPLS Dest TEP Info
ETEP Address Egr Label Last Change
Transport
1.1.1.12 262136 09/06/2016 20:55:51
Idp
1.1.1.16 262136 09/06/2016 20:55:51
Idp
.....
Number of entries : 2

All-Active Multihoming DF Selection: Route Type 4

78 © Nokia 2019

Public

EVPN Single-Active Multihoming and Mass-Withdraw

EVPN NLRI Route Types and Extended Communities

Route Type	Route Description	Route Usage	Reference
1	Ethernet Auto-Discovery (A-D) Route	Endpoint Discovery, Aliasing, Mass-Withdraw	RFC7432
2	MAC Advertisement Route	MAC/IP Advertisement	RFC7432
3	Inclusive Multicast Route	BUM Flooding Tree	RFC7432
4	Ethernet Segment Route	Ethernet Segment Discovery, DF Election	RFC7432
5	IP Prefix Route	IP Route Advertisement	draft-ietf-bess-evpn-prefix- advertisement-11
Extended Community Type	Extended Community Description	Extended Community Usage	Reference
0x06/0x01	ESI Label Extended Community	Split Horizon Label	RFC7432
0x06/0x02	ES-Import Route Target	Redundancy Group Discovery	RFC7432
0x06/0x00	MAC Mobility Extended Community	MAC Mobility	RFC7432
0x03/0x030d	Default Gateway Extended Community	Default Gateway	RFC7432

80 © Nokia 2019

Public

Summary

- EVPN provides next-generation VPN solutions for Layer 2 and Layer 3 services over Ethernet
 - Consistent signaled FDB in control plane using MP-BGP vs. flood-and-learn FDB in data plane
 - L3VPN-like operation for scalability and control
 - Flow-based load balancing and all-active multipathing
 - Delivering Layer 2 and Layer 3 services over the same interface, VLAN and VPN
 - Simpler provisioning and management with a single VPN technology

Public

- ARP/ND security and MAC provisioning
- MPLS or IP data plane encapsulation choices
- More information
 - IETF BGP Enabled ServiceS (bess) Working Group <u>http://datatracker.ietf.org/wg/bess/</u>
 - Requirements: RFC7209
 - http://tools.ietf.org/html/rfc7209
 - Base specification: RFC7432
 - <u>http://tools.ietf.org/html/</u>rfc7432
- 82 © Nokia 2019

