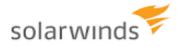

Case Study

CASE-1: Objective/Goal

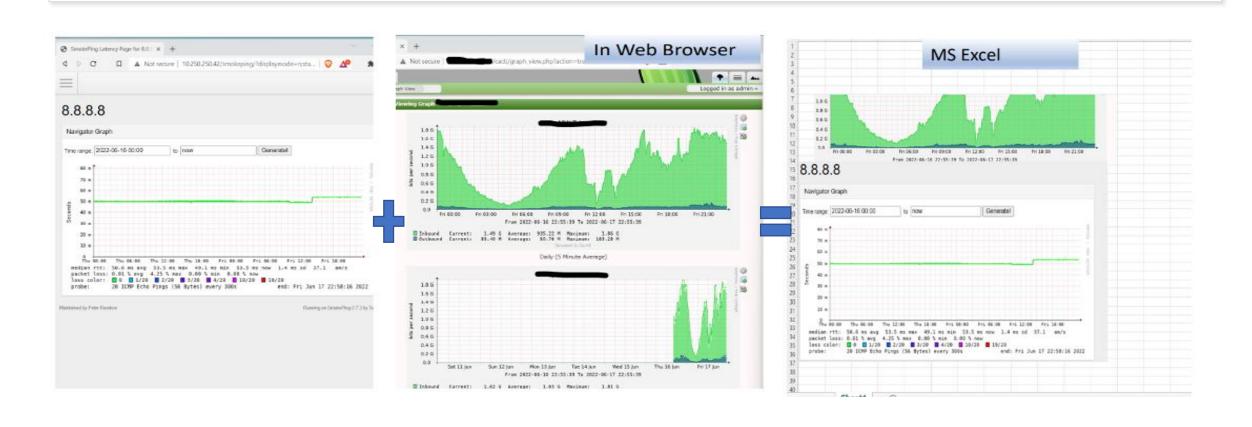
Integrate & Correlate Usage & Latency data sets from multiple Collectors/Probes for Capacity Planning & Performance Analytics



Popular Monitoring Tools used in BD

Monitoring Software Type Comparison

ICMP Based monitoring


- Zabbix
- Solarwinds
- PRTG
- Smokeping
- Nagios

SNMP Based Monitoring

- Zabbix
- Solarwinds
- PRTG
- Cacti
- LibreNMS
- Observium
- Nagios

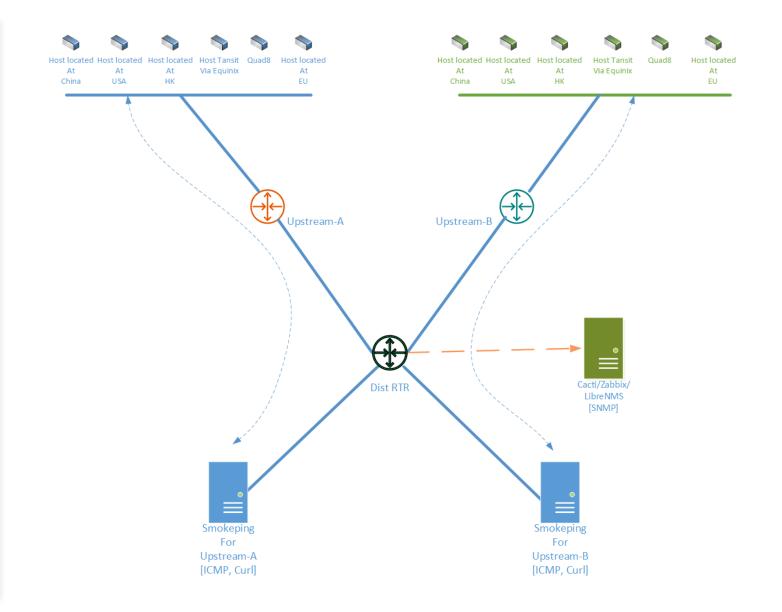
Operational Challenges

- Tracking & Logging Latency deviation from ISP prefixes
- Transit Provider Performance Analysis correlating ICMP & SNMP data sets
- Too much manual works also time consuming & error prone
- Timeline based aggregated comparison was not possible

Operational Challenges (contd.)

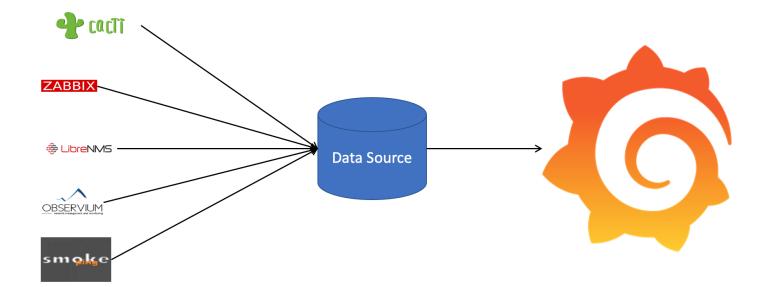
Capacity planning & forecast:

- Threshold target was not statistically available
- Aggregated Transit usage was needed for upgrade/downgrade plans
- Management Dashboard was needed

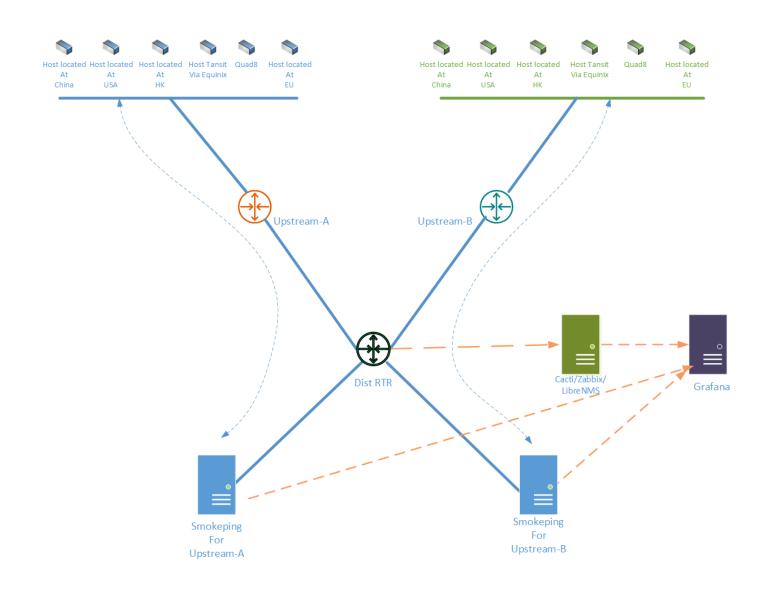

Reporting:

Manual records with multiple Screen Shots and Excel file logs for incidents

Ops Notes:


- Need to keep the existing platforms safe (data integrity) to avoid unforeseen risks
- Need solution for cross platform data integration

Monitoring System Topology: Existing



Selecting Grafana

• Grafana is an opensource interactive data-visualization platform, developed by <u>Grafana</u> <u>Labs</u>, which allows users to see their data via charts and graphs that are unified into one dashboard (or multiple dashboards!) for easier interpretation and understanding. You can also query and set alerts on your information and metrics from wherever that information is stored.

Monitoring System Topology: with Grafana

Data Sources for Grafana integration

- Cacti & Smokeping
 - Grafana SimpleJson datasource with Grafana-rrd-Server
- Zabbix
 - Zabbix App
- Librenms & Observium
 - Grafana mysql data source [Need to configure mysql database to allow Grafana Server IP for accessing database and run the query]
 - Grafana InfluxDB Data Source

Grafana Integration Steps

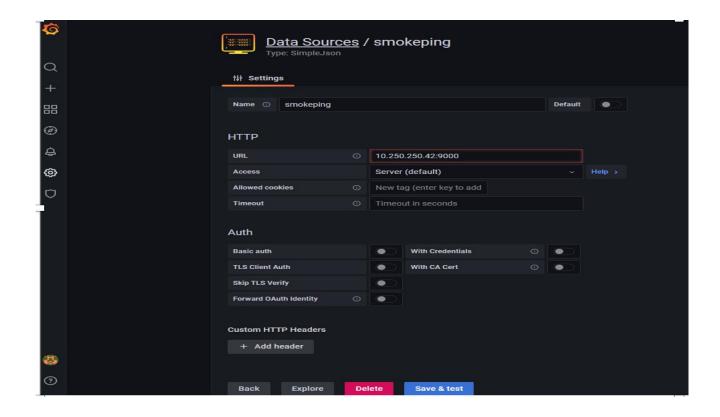
Installation Steps:

- 1. Install Grafana
- 2. Install Grafana-rrd-Server in Cacti & Smokeping server
- 3. Add SimpleJson Data-Sources at Grafana server
- 4. Add Zabbix App at Grafana server

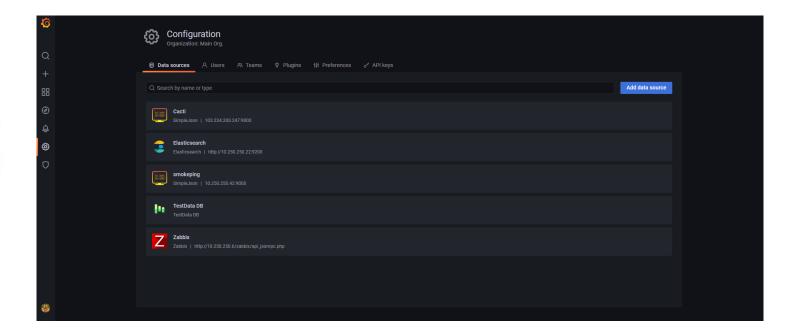
Configuration Steps:

- 1. Create a new Dashboard at Grafana
- 2. Selected the *data-source* and run required query
- 3. Select in-built graphing options for graph
- 4. Start ICMP & SNMP based data correlation & performance analysis

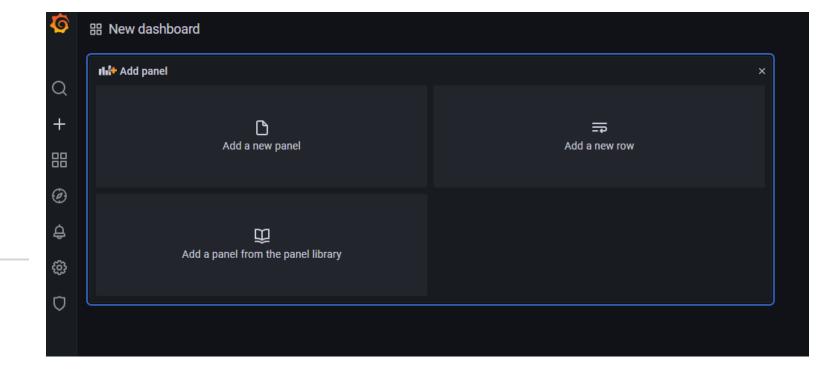
Installation & Integration Challenges

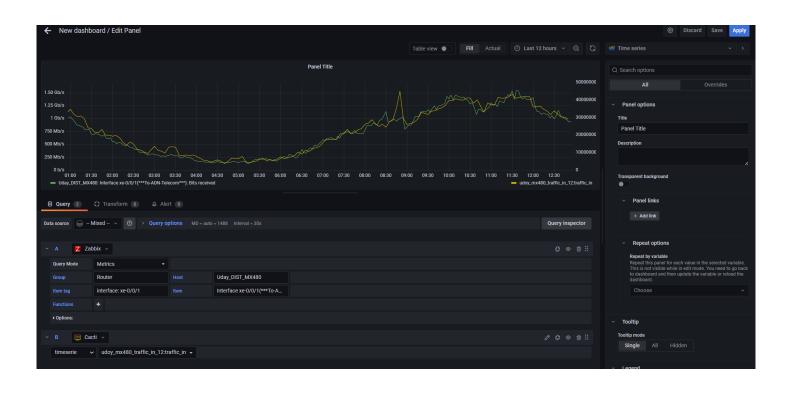

Key notes on RRD:

- Most of the graphing softwares like cacti/smokeping/librenms store values to rrd files and use those rrd files to generate graphs
- These *rrd files* need to be readable via Grafana SimpleJSON data-collector


Importing rrd values:

- Install small software/script called Grafana RRD Server which works as a bridge between existing rrd based graphing softwares and Grafana
- Follow online installation process:
 - Download/Install Link: https://github.com/doublemarket/grafana-rrd-server
- Allow server firewall to listen to port 9000 for Grafana grafana-rrd-server -p 9000 -r /path/to/rrds -s 300


Adding Data Source


- Data-Source Panel:
- Each Remote server
 [Cacti/Smokeping/Zabbix] needs a separate data-source

Creating Dashboard

Creating Dashboard – contd.

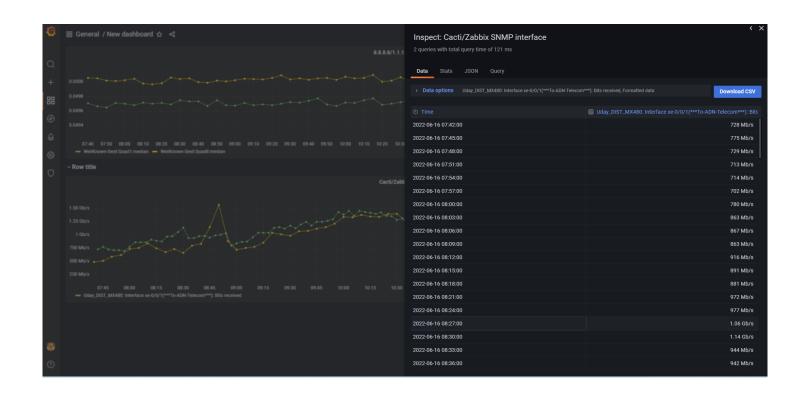
Outcome -Cross Platform Data Correlation

Multiple data-sources are combined into one dashboard

Results — we need a end point!

Challenges

- **Capacity planning & forecast:**
 - Threshold target was not statistically available
 - Aggregated Transit usage was needed for upgrade/downgrade plans
 - Management Dashboard was needed
- Reporting:
 - Manual records with multiple Screen Shots and Excel file logs for incidents
- **Ops Notes:**
 - Need to keep the existing platforms safe (data integrity) to avoid unforeseen risks
 - Need solution for cross platform data integration


Results

- Capacity planning & forecast:
 - Link Threshold found in between 89-91% utilization
 - Timeline based aggregated Transit usage was recorded in 5 mins granular interval with no data loss.
 - Management Dashboard was made possible
- Reporting:
 - Accurately report weekly peak usage and plan for necessary upgrade/downgrade
 Live Graph comments were available for more readily
 - available reports
- **Ops Notes:**

 - Avoided the risk of re-tuning all existing platforms Achieved Cross-Platform Data integration for correlated analytics

Still not done!!! ©

- Exporting data (CSV):
- 5 min interval Full/Partial records are available in CSV format in a couple of clicks.
- This can later be used for more extensive reporting!

Little more!!!

Not only Graphs but Features can also be combined in a single dashboard

CASE-2: Objective/ Goal

An alternative approach to view Mikrotik PPPoE interface historical usage using Zabbix & Grafana

Hardware & Software used for Retail network

Mikrotik Routers [CCR Series Mostly]

In-house developed OSS/BSS software billing & client management

Zabbix Server

Grafana Server

Widely used features like these

Operation Challenges

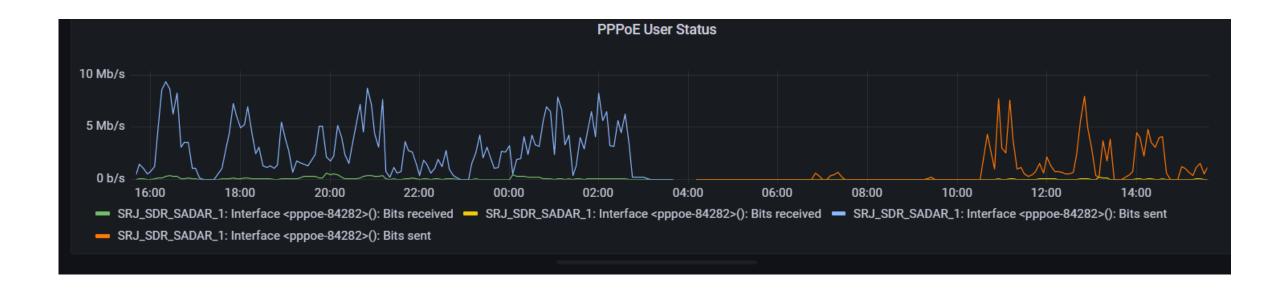
- PPPoE users' session status [Connection/Disconnection/Failed]
- 2. Usage history

Are missing

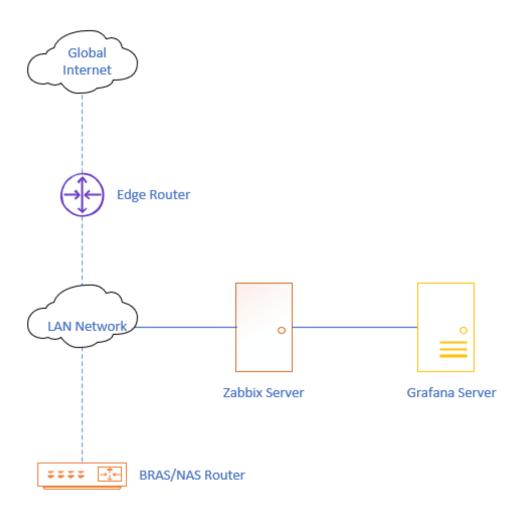
To resolve Problem-2 [Usage history]

1. Enabled SNMP at Mikrotik NAS/BRAS

2. Installed Zabbix Server and Start probing Mikrotik interfaces using built-in Mikrotik templates


Configuration challenges

As PPPoE interfaces are created dynamically, their SNMP index values keep changing every time session starts. So its impossible to generate static graphs using rrd number.


Interface <pppoe-84282>(): Bits received 2</pppoe-84282>	11h 51m 3s	24 bps	-1.79 Kbps	component: network description interface: <pppoe-84282></pppoe-84282>	Graph
Interface <pppoe-84282>(): Bits received 2</pppoe-84282>	59s	34.64 Kbps	-30.47 Kbps	component: network description interface: <pppoe-84282></pppoe-84282>	Graph
Interface <pppoe-84282>(): Bits sent</pppoe-84282>	11h 50m 58s	48 bps	-608 bps	component: network description interface: <pppoe-84282></pppoe-84282>	Graph i
Interface <pppoe-84282>(): Bits sent</pppoe-84282>	55s	576.46 Kbps	-1.01 Mbps	component: network description interface: <pppoe-84282></pppoe-84282>	Graph
Interface <pppoe-84282>(): Interface type</pppoe-84282>	23h 30m 34s	ppp (23)		component: network description interface: <pppoe-84282></pppoe-84282>	Graph i
Interface <pppoe-84282>(): Interface type</pppoe-84282>	10h 30m 57s	ppp (23)		component: network description interface: <pppoe-84282></pppoe-84282>	Graph
Interface <pppoe-84282>(): Operational status</pppoe-84282>	11h 51m 3s	up (1)		component: network description interface: <pppoe-84282></pppoe-84282>	Graph i
Interface <pppoe-84282>(): Operational status</pppoe-84282>	1m 4s	up (1)		component: network description interface: <pppoe-84282></pppoe-84282>	Graph

Workaround

At this point we found Grafana provides excellent way to generate the time series graph which we are looking for

Setup scenario

Data Source & Template used for this

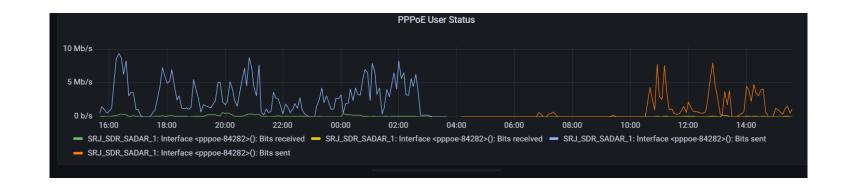
• Zabbix:

• Builtin Mikrotik Templates

Name ▲	Hosts	Items	Triggers	Graphs	Dashboards	Discovery	Web Linke	d templates	Linked to templates	Tags
MikroTik CCR1009-7G-1C-1S+PC SNMP	Hosts 2	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network target: ccr1009-7g-1c-1 target: mikrotik
MikroTik CCR1009-7G-1C-1S+ SNMP	Hosts 13	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network target: ccr1009-7g-1c-1 target: mikrotik
MikroTik CCR1009-7G-1C-PC SNMP	Hosts	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network target: ccr1009-7g-1c-pc target: mikrotik
MikroTik CCR1016-12G SNMP	Hosts	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network target: ccr1016-12g target: mikrotik
MikroTik CCR1016-12S-1S+ SNMP	Hosts	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network arget: ccr1016-12s-1spl target: mikrotik
MikroTik CCR1036-8G-2S+EM SNMP	Hosts	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network target: ccr1036-8g-2spl target: mikrotik
MikroTik CCR1036-8G-2S+ SNMP	Hosts 10	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network target: ccr1036-8g-2splus target: mikrotik
MikroTik CCR1036-12G-4S-EM SNMP	Hosts	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network arget: ccr1036-12g-4s-em target: mikrotik
MikroTik CCR1036-12G-4S SNMP	Hosts 4	Items 18	Triggers 10	Graphs 1	Dashboards 1	Discovery 8	Web			class: network target: ccr1036-12g-4s target: mikrotik
MikroTik CCR1072-1G-8S+ SNMP	Hoete	Items 18	Trinners 10	Granhs 1	Dashhoards 1	Discovery 8	Weh			class: polyark I target: ccr1072 1a Scolus I target: mikrotik

• Grafana:

Zabbix App

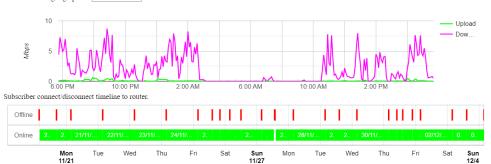


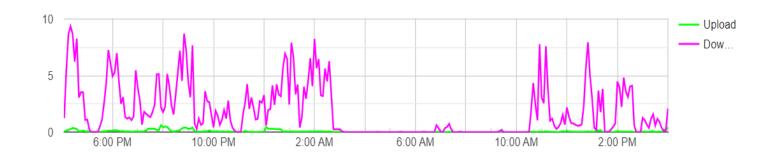
Grafana Query

Inspect: PPPoE User Status 2 queries with total query time of 1 s Stats JSON Query url: "api/ds/query" data: Object rqueries: Array[2] v0: Object ▶application: Object ►datasource: Object ▶functions: Array[0] ⊳group: Object vhost: Object vitem: Object filter: "Interface <pppoe-84282>(): Bits received" vitemTag: Object filter: "interface: <pppoe-84282>" ▶options: Object ▶proxy: Object queryType: "0" refId: "A" resultFormat: "time series" ⊳table: Object

v1: Object ►application: Object ►datasource: Object ▶functions: Array[0] ⊳group: Object hide: false rhost: Object filter: "SRJ SDR SADAR 1" vitem: Object filter: "Interface <pppoe-84282>(): Bits sent" vitemTag: Object filter: "interface: <pppoe-84282>" ▶options: Object ⊳proxy: Object queryType: "0" refId: "B" resultFormat: "time series"

Outcome/Result at Grafana Dashboard


shared.udoyadn.com/OnuData/GetInternetUsages?id=mkB79vlwFQG7ojCr7BpMXwawspfmpeawspfmpe



Subscriber usages graph for Last 24 Hours 🗸

Questions & Answers

Thank You