
Universal Acceptance

Email Address Internationalization (EAI)
Configuration and Technical Overview

हरीश चौधरी (Harish Chowdhary), UA Ambassador

मेल@ईंटरनेट.भारत, Intern3tgovernance@gmail.com

2

3

Key Fundamental Aspects : Unicode, IDNs, UA

▪ Encoding glyphs into code points.
▪ There are multiple ways to use a glyph
 “è” = U+00E8
 “e`” = “è” = U+0065 U+0300
 Normalization is a process to insure that no matter the user type, the end

representation will be the same.
 For the two entries above, Normalization Form C (NFC) will generate
U+00E8 for both
▪ In specifications, code points are shown in hex using the U+XXXX notation.
▪ Code points are typically carried using the UTF-8 (Unicode Transformation

Format, 8 bit) format.
a. Variable number of bytes for a single code point.
b. ASCII is used as is.
c. Gold standard for carrying Unicode code points in web, protocols, etc

4

Domain Names

▪ A domain name is an ordered set of labels: a.b.c.d
▪ A top-level domain is the rightmost label: “d” in left-to-right scripts.
▪ The Domain Name System (DNS) is the distributed database and service for

querying domain name records.
▪ A domain name may have multiple DNS records such as:
 IPv4 address for that domain name.
 IPv6 address for that domain name.
 Hostname of the email server responsible for that domain name and so on
….
▪ A zone is the list of domain name records – called Resource Records (RR) – for
the labels under another label (a bit simplified…)

5

Types of Domain Names

Domain Name Category

universal-acceptance-
test.international

ASCII.ASCII, new-long

universal-acceptance-test.icu ASCII.ASCII, new-short

موريتانيا.الشامل-القبول-تجربة IDN.IDN, RTL

सार्वभौमिक-स्र्ीकृति-परीक्षण.संगठन IDN.IDN, Devanagari

ཡོངས་ཁྱབ་ངོས་ལེན་བརྟག་དཔྱད.com IDN.ASCII, Tibetan

universal-acceptance-test.קום ASCII.IDN, RTL

Email Address Category

email-test@universal-
acceptance-test.international

ASCII@ASCII.ASCII, new-long

ਈਮੇਲ-ਪਰਖ@ਸਰਵਵਵਆਪਕ-ਪਰਵਾਨਗੀ-
ਪਰਖ.ਭਾਰਤ

Unicode@IDN.IDN, , Gurmukhi

email-test@universal-
acceptance-test.קום

ASCII@ASCII.IDN, RTL, Hebrew

6

Internationalized Domain Names (IDNs)

▪ Internationalized Domain Names (IDNs) enable the use of non-ASCII
characters for any label of a domain name.

▪ Not all labels of a domain name may be internationalized.
 Example: exâmple.ca
▪ User uses the IDN version, but the IDN is converted into ASCII for DNS

resolution.
 exâmple => exmple-xta => xn--exmple-xta
 The xn-- prefix is added to identify an IDN

Example process of using an IDN

▪ User enters in a browser: http://exâmple.ca
▪ Browser does normalization on the user entry.
▪ Browser converts exâmple.ca in an ASCII compatible representation called

Punycode [RFC3492], and adds ‘xn--’ in front of it
 exâmple.ca becomes: xn--exmple-xta.ca or तनक्सी.भारि becomes:
 xn--11b1b9b0ah0f.xn--h2brj9c
▪ Browser calls the DNS to get the IP address of xn-- exmple-xta.ca
▪ Browser connects to the HTTP server at the received IP address

7

Internationalized Domain Names

▪The protocol for handling IDNs is named IDN for Applications (IDNA)
▪Two versions: IDNA2003 and IDNA2008. The latter (IDNA2008) is the one currently
used.

▪U-label is the Unicode native representation of an IDN label: ननक्सी.भारत
▪A-label is the Punycode representation of an IDN label: xn--11b1b9b0ah0f.xn--
h2brj9c

8

Universal Acceptance (UA)

UA is about how to appropriately support internationalized identifiers, as well as
new and long TLDs.

Internationalized identifiers

* IDN

* EAI

9

How to Quantify Universal Acceptance

Accept Validate StoreProcess Display

Applicable to both domain names and email addresses

10

• Should accept both

A-label and U-

label.

• Support UTF-8

• Need large enough

input field with

total 735 bytes

requirements

including email

local part of up to

64 bytes

• Input to be

normalized as per

Unicode

Normalization

Form C (NFC)

• Validation against

the IDNA 2008

protocol

• TLD verification

against the

authoritative

maintained by

IANA.

• Local part of email

is defined by

service providers,

however comply to

best practices

• All components of

domain name or

email(except the

TLD name if it is

not an IDN) should

be in a single script

(e.g., Arabic or

Han) or closely

related scripts

(e.g., Japanese

Kanji, Katakana,

Hiragana, and

Romaji).

• Use NFC form

before storing.

• Use UTF-8 for

storage in

databases.

• Ensure

environment

supports Unicode

and automatic

conversion to or

from UTF-8 on

input and output.

• Consistent internal

representation—

either U-labels or

A-labels—for

IDNs.

• Use most current

Unicode standards.

• Regardless of the

way addresses and

domain names are

stored, you must

be able to match

strings in multiple

formats.

• Use recent

versions of s/w

libraries and web

standards

• Use APIs that

support UTF-8

• RTL scripts

require special

considerations

• Allow as many

scripts that the

Unicode supports.

• Be aware that

some languages

can be written

using different

scripts, and that

some scripts can

be used to write

many different

languages.

• Ensure sort order,

searches and

collation according

to locale and

languages

specifications

• Ensure that s/w,

applications

displays nearly all

Unicode code

points, with

relevant font

libraries.

• Display IDNs in

their native

character form

unless there is a

specific

requirement to

display them as A-

labels.

• Special

consideration

while using LTR

and RTL scripts..

• It may necessitate

to design

applications

separately for

different languages

or language

groups.

11

What Comes Under the UA Ambit?

Applications and Websites

- Wikipedia.org, ICANN.org, Amazon.com, custom websites globally

- PowerPoint, Google Docs, Safari, Acrobat, custom apps

Social Media and Search Engines

- Chrome, Bing, Safari, Firefox, local (e.g., Chinese) browsers

- Facebook, Instagram, Twitter, Skype, WeChat, WhatsApp, Viber

Programming Languages and Frameworks

- JavaScript, Java, Swift, C#, PHP, Python

- Angular, Spring, .NET core, J2EE, WordPress, SAP, Oracle

Platforms, Operating Systems and Sytem Tools

- iOS, Windows, Linux, Android, App Stores

- Active Directory, OpenLDAP, OpenSSL, Ping, Telnet

Standards and Best Practices

- IETF RFCs, W3C HTML, Unicode CLDR, WHATWG

- Industry-based standards (health, aviation, ...)

12

Anatomy of an IDN and
Internationalized Email

Internationalized Domain
Name (IDN)

http://www.bücher.berlin

Protocol Subdomain Domain TLD

Internationalized Email

Günte@bücher.berlin

Local part Domain name

13

Actions to be Performed on a Domain Name

List of actions needed to handle IDNs effectively:

• Normalization (é U+0065 U+0301 → é U+00E9)

• U-Label~A-Label Conversion ((to xn--mgbu9cr81d لاہور

• Length validation of A-Label

• Case-folding (if necessary) (Ω ω , É é)

• Validation (ककिाब कि िाब)

• Unicode Compatible Display (ဟယလ် ို �������)

14

Basics of Unicode and its Forms

• Unicode encodes different scripts in a machine understandable

manner i.e., in numerical form called a “Codepoint.”

• These Codepoints are in hex form and use the U+XXXX notation,

the XXX being the assigned code point value.

• Though Unicode aims at adhering to the one character, one code-

point principle, there have been instances where it has ended up

providing multiple ways of encoding single code point.

è = U+00E8
e + ` = è = U+0065 +

U+0300

क़ = U+0958
क + ़ = क़ = U+0915 + U+093C

U+0622 = آ
+ ا + U+0627 = ا = ٓ

U+0653

• Normalization ensures that the end representation is the same

even if users type differently.

• IDN standards recommend using Normalization Form C (NFC).

https://unicode.org/reports/tr15/

15

Email Terminology

UASG Working Groups Role

Mail User Agent (MUA) The software used by the user who sends and

receives email.

With web mail, the MUA is an application run in a

browser environment. E.g. Gmail or Xgen Running in

Browser/outlook/thunderbird

Mail Transfer Agent (MTA) A server application that receives mail from the MSA, or from

another MTA. It will find (through name servers and the DNS) the

MX record from the recipient domain's DNS zone in order to know

how to transfer the mail. It then transfers the mail (with SMTP) to

another MTA (which is known as SMTP relaying) .

Examples of MTAs are Postfix, Exim, Sendmail, qmail etc.

Mail Submission Agent (MSA) A server program that receives mail from an MUA, checks for any

errors, and transfers it (with SMTP) to the MTA hosted on the same

server. Typically, this function is bundled with an MTA

Mail Delivery Agent (MDA) A software, usually on servers, which receives the

email from an MTA and is the final destination for

the email.

It typically stores the email in a file (or a database) and waits for the

MUA of the destination user to fetch the email. Typically, this

function is bundled with an MTA.

An example is Dovecot, which is mainly a POP3 and IMAP server

allowing an MUA to retrieve mail, but also includes an MDA which

takes mail from an MTA and delivers it to the server’s mailbox

16

Internationalized Email Acceptance
Rate

Testing of popular websites taken from UASG027

https://uasg.tech/download/uasg-027-country-based-evaluation-of-websites-for-acceptance-of-email-addresses-in-2020-en/

17

Email Terminology

For example, Postfix is typically used as an MTA, MDA, and MSA.

 Sending an Email

18

Email : How To Find the Destination Server

When sending email to user@example.com, the method to find the destination
email server is by querying the DNS for the MX records of the domain.

For example, the MX records for example.com could be:

• MX 10 server1.example.com

• MX 10 server2.example.com

• MX 20 server3.example.com

The sender email server would then try connecting to either server 1 or server 2
since they have same priority (10)

If none respond, it would then try server 3 since it has a lower priority (20)

The higher number means lower priority

19

Email Address Internationalization (EAI)

Email syntax: leftside@domainname
▪Domain name can be internationalized as an IDN (U labels or A-labels).
▪Left side (also known as local part/mailbox name) with Unicode (UTF-8) is EAI.
▪Not all email servers support EAI, so a negotiation protocol is used to only send
EAI when the target server supports it. If not, then it falls back and returns an
‘unable to deliver’ message back to the sender.
▪The SMTPUTF8 option is used within the mail transfer protocol (SMTP: Simple
Mail Transport Protocol) to signal the support of EAI by an email server

Overhead
▪Mail headers need to be updated to support EAI.
▪Mail headers are used by mail software to get more information on how to
deliver email.

20

EAI Protocol Changes

SMTP
▪Is augmented to support EAI.
▪Has a signalling flag (SMTPUTF8) to specify support of EAI.
▪All SMTP servers in the path must support EAI to successfully deliver the email.
POP/IMAP
▪Are augmented to properly support EAI.
▪Have a signalling flag to specify support of EAI.
Could “half support” EAI by providing a downgraded email version to the non-EAI
conforming email software clients (downgrading - While it may look interesting,
downgrading may cause many issues for the users and the sysadmin to debug issues. Try to avoid

using the downgrading mechanism if you can.).
EAI Protocol Changes : SMTP
▪SMTP Server announcing the support of EAI on the initial greeting.
 EHLO SMTPUTF8
▪SMTP Client connecting to the compliant SMTP Server.
 MAIL SMTPUTF8
▪Headers may have UTF-8 content.
▪Email body already supports UTF-8.
EAI IMAP/POP Protocol Changes
POP : UTF8 command
IMAP : ENABLE UTF8=ACCEPT command

21

Protocol Changes, Delivery Path Considerations

To send and receive an email with EAI

▪All email parties involved in the delivery path have to be updated for EAI
support.
▪If a single SMTP server in the path does not support EAI, then the email is not
delivered.

22

Demonstration : Setup

EAI email path between two (2) users.
User 1:
kévin@exâmple.com
▪Using MailMate on MacOSX with SMTPUTF8 enabled.
▪Using his own mail server infrastructure.

User 2:
peter@exâmple.ca
▪Using Gmail web interface: no configuration necessary apart from the
domain and user.
▪Using Google mail server infrastructure.

mailto:kévin@exâmple.com
mailto:peter@exâmple.ca

23

Demonstration : Setup

For User 1 (kévin@exâmple.com)
▪Its inbound email server is Courier as IMAP server.
▪Its outbound email server is Courier as SMTP server.
▪Courier uses a Postfix relay server acting as a pure MTA.

For User 2 (peter@exâmple.ca)
▪Its inbound/outbound email servers are Google Gmail servers.
 Confirming advertised mail server (Postfix) for kévin@exâmple.com:
 dig xn--exmple-xta.com mx
 xn--exmple-xta.com. 300 IN MX 10
 postfix.xn--exmple-xta.com.

 Confirming advertised mail server (Gmail) for peter@exâmple.ca:
 dig xn--exmple-xta.ca mx

mailto:kévin@exâmple.com
mailto:peter@exâmple.ca

24

EAI : Configuration

Postfix: Configuration

These are the specific EAI configuration requirements.
/etc/postfix/main.cf
...
enable SMTPUTF8
smtputf8_enable = yes
#defines the hostname for SMTP. Does not need to be an IDN.
myhostname = postfix.xn--exmple-xta.com
#defines the domain of the host. Does not need to be an IDN.
mydomain = xn--exmple-xta.com
#domains of the user mailboxes. With smtputf8_enable, this is the key config.
virtual_mailbox_domains = exâmple.com

25

EAI : Configuration

Courier: Configuration

These are the specific EAI configuration requirements.

/etc/courier/defaultdomain
defines the default domain used by Courier
exâmple.com

/etc/courier/locals
defines the local domain Courier will deliver mail to
exâmple.com
localhost

26

EAI : Configuration

MailMate: Configuration

Commercial email client on
MacOSX.

❑For user kévin@exâmple.com

❑Using courier.xn--exmple-
xta.com running Courier software
as its IMAP and SMTP server.

❑Set support for SMTPUTF8:
▪Defaults write
com.freron.MailMate
MmSMTPUTF8Enabled –bool
YES

mailto:kévin@exâmple.com

27

From MailMate to Gmail

28

Important points

Case Folding

Mail sent from peter@viagenie.ca to KÉVIN@exâmple.com
• Email was NOT delivered.
Why?

kevin and KEVIN as local parts are typically handled as same user. Case folding is
automatic for ASCII local parts.

But kévin and KÉVIN are by default not the same user. Unicode case folding is
typically not done by servers.

Typically in ASCII email addresses, the local part can be uppercase or lowercase.

In UTF-8, case folding is not the same as ASCII.

29

Important points

Avoiding Interpretation as Spam

▪Spam filtering may think EAI is spam even with SPF, DKIM, etc.
•This is because the spam filtering does not know about EAI.

▪New TLDs and IDNs may also be viewed as spam.
▪Spam filtering may think EAI is spam even with SPF, DKIM, etc. This is because
the spam filtering does not know about EAI.
▪New TLDs and IDNs may also be viewed as spam. Some Mail User Agent (MUA)
software uses your contacts database to determine if an email is known to you
or not
▪This will make it more likely to be considered spam if the email of the sender is
not in your contacts database.
▪Make sure the contacts database contains the EAI email of the contacts.

Enabling UA the Python
Way

Coding for UA compliant domain
and email validators

31

About Python Programming Language

• Python is an open-source language operating under OSI-

approved open-source license.

• A general purpose, interpreted, high level programming

language with a very vibrant developer support community.

• Most of the code/packages are open- source, at least all those

concerning UA.

32

Python 2: Datatypes and Unicode Enablement

• The prevalent Python version is Python 3, however, there are
many older implementations which still use Python 2 due to
legacy reasons.

• As per the survey*, Python 2 is still employed by 6% of Python
implementations.

• In Python 2, the default encoding for the String Type “str” was
ASCII.

• The Unicode encoding required to be explicitly declared by
prepending “u” before the string literal.

• It used to show datatype of such a string as “unicode”, instead
of the default “str”

• Python had a major Unicode support enablement in Python 3

• *Python Developers Survey 2020 conducted by JetBrains

ACCEPT VALIDATE STORE PROCESS DISPLAY

https://www.jetbrains.com/lp/python-developers-survey-2020/

33

Python 3: Datatypes and Unicode Enablement

• Python 3 by default uses UTF-8 for its entire source code.

• The primary string datatype “str” thus is by default Unicode

enabled.

• In Python 3 onwards, one can even use Unicode in the string

literal, meaning, one can have Unicode variable names too.

• For more information, refer to the Python official

documentation on Unicode support here.

• In short, the basic “str” datatype in Python is sufficient to

cater to Unicode handling requirements.

ACCEPT VALIDATE STORE PROCESS DISPLAY

https://docs.python.org/3/howto/unicode.html#python-s-unicode-support

34

Unicode Normalization

• Though Unicode aims at adhering to the one character, one code-

point principle, there have been instances where it has ended up

providing multiple ways of encoding single code point.

è = U+00E8
e + ` = è = U+0065 +

U+0300

क + ़ = क़ = U+0915 + U+093C
क़ = U+0958

آ = U+0622
U+0627 + U+0653= ا

• Normalization ensures that the end representation is the same,

even if users type differently.

• IDN standards recommend using Normalization Form C (NFC).

ACCEPT VALIDATE STORE PROCESS DISPLAY

https://unicode.org/reports/tr15/

35

IDNA Conversion

• The default python library “encodings.idna” for IDN
Compatability Processing, is based of IDNA2003
implementation. It is strongly recommended not to use the
library.
• Ref: https://docs.python.org/2.4/lib/module-encodings.idna.html

• Alternatively, the “idna” package present on Python Package
Index (PyPI) ably supports the IDNA2008 implementation.

• Can be installed in two ways:
• pip install idna
• Downloading files from https://github.com/kjd/idna

followed by:
• "python setup.py install"

• The “idna” library is highly recommended by the UASG for UA
compliant code development by developers.

https://docs.python.org/2.4/lib/module-encodings.idna.html
https://github.com/kjd/idna
https://uasg.tech/download/uasg-018a-ua-compliance-of-some-programming-language-libraries-and-frameworks-en/?wpdmdl=3658&refresh=61af0d432f7a61638862147

36

IDNA Conversion – IDNA Package

• There are two major functions:

• Encode: converts the IDN to its Punycode equivalent

• Decode: converts the Punycode domain to its IDN equivalent

• There are three modes of operation:

• idna.encode(<IDN_STRING>) & idna.decode(<PUNYCODE_STRING>)

• E.g., idna.encode(exâmple.ca’) or idna.decode('xn--exmple-xta.ca')

• <IDN_STRING>.encode('idna’) & <PUNYCODE_STRING>.decode('idna')

• Here variables holding <IDN_STRING> and <PUNYCODE_STRING> will be

used

• idna.alabel(‘UNICODE_Label') & idna.ulabel(‘PUNYCODE_LABEL’)

• idna.alabel('périple') & idna.ulabel('xn--priple-bva')

• For bug-report/issue-tracking, please visit:

https://github.com/kjd/idna/issues

ACCEPT VALIDATE STORE PROCESS DISPLAY

https://github.com/kjd/idna/issues

37

Storing as U-Label or A-Label

• As long as the labels are normalized, the U-Label and

A-Label are fully interconvertible and can be stored on

the database in either form.

• However, if the business requirement dictates some

operations which depend on various forms of Unicode

processing (Validating, sorting, searching), it becomes

incumbent on the developer to store in U-Label

format.

ACCEPT VALIDATE STORE PROCESS DISPLAY

38

Displaying the Unicode Properly

ACCEPT VALIDATE STORE PROCESS DISPLAY

• Make sure that your applications/interfaces support the

necessary text-layout engines viz. Uniscribe / DirectWrite

(Windows), Pango and ICU (Linux), AAT (IOS). Most of the

platforms/languages already support them implicitly. This is

more relevant for legacy applications.

• Always ensure U-Label for user-facing interfaces unless A-

Label is explicitly needed.

• Make sure you use appropriate fonts for ensuring proper

rendering and legibility for the end user.

39

Displaying Scripts from Right-to-Left (RTL)

ACCEPT VALIDATE STORE PROCESS DISPLAY

Validators

Domain and Email Validation

ACCEPT VALIDATE STORE PROCESS DISPLAY

41

Domain Name Validation

• Domain name validation typically involves checking if the
user-submitted domain name complies with the URL protocol
(protocol compliance validation check).

• The user-submitted domain resolves to a registered domain
name (functional validation check).

ACCEPT VALIDATE STORE PROCESS DISPLAY

42

Domain Validation

• Validators Package
• Python Data Validation for Humans

• Domain validation is RegEx-based
• With very rudimentary support for Punycode inclusion.

• Email Validation is also RegEx-based
• Seems to give results but other important tasks like

normalization and cannot be expected.

• Better to be avoided until the required features are well
supported.

43

Domain Validation

• “idna” package available through PyPI

• Provides the “validation” through exception mechanism
(typically not the expected way though).

>>> import idna
>>> idna.encode('Königsgäßchen')

• Raises exception:

• idna.core.InvalidCodepoint: Codepoint U+004B at position 1 of
'Königsgäßchen' not allowed

• Likewise, the library raises various exceptions as per the
specifications from the IDNA2008 specification.

44

Domain Validation

• More specific exceptions that are generated are:

• idna.IDNABidiError - when the error reflects an illegal
combination of left-to-right and right-to-left characters in
a label.

• idna.InvalidCodepoint - when a specific codepoint is an
illegal character in an IDN label (i.e.. INVALID).

• idna.InvalidCodepointContext - when the codepoint is
illegal based on its positional context (i.e., it is CONTEXTO
or CONTEXTJ but the contextual requirements are not
satisfied).

• “idna” package available through PyPI

45

Domain Validation

• idna.IDNABidiError - when the error reflects an illegal
combination of left-to-right and right-to-left characters in a
label

• >> import idna
• >> idna.encode('कखب.com')

• Raises exception:
• IDNABidiError('Invalid direction for codepoint at position

{0} in a left-to-right label'.format(idx))
• idna.core.IDNABidiError: Invalid direction for codepoint

at position 3 in a left-to-right label

46

Domain Validation

• idna.InvalidCodepointContext - when the codepoint is illegal
based on its positional context (i.e., it is CONTEXTO or
CONTEXTJ but the contextual requirements are not satisfied).

• >> import idna
• >> idna.encode('wordstar.com')

• Raises exception:
• raise IDNAError('Unknown codepoint adjacent to joiner {0} at

position {1} in {2}'.format(
• idna.core.IDNAError: Unknown codepoint adjacent to joiner

U+200D at position 5 in 'word\u200dstar'

• CONTAINS ZERO WIDTH
JOINER, A CONTEXTJ Character

• w o r d ZWJ s t a r . c o m

47

TLD Validation

https://थ कंट्रान्स.भारत
https://<DOMAIN_NAME>.<TOP_LEVEL_DOMAIN>

• Validate the TLD part of the
domain name directly with the
IANA repository.

• TLD allocation process involves
many other processes than
mere IDNA protocol compliance.

• Checking directly with the IANA
repository will always yield the
most accurate results on the
date.

Validating the TLD part with IANA repository

48

TLD Validation

Validating the TLD part with IANA repository

SAMPLE CODE FOR VALIDATING ASCII/A-LABEL TLDs WITH LIVE IANA
REPOSITORY:

import urllib3

http = urllib3.PoolManager()

strTLD = "XN--H2BRJ9C"

resp = http.request("GET", "https://data.iana.org/TLD/tlds-alpha-by-
domain.txt")

strValidTLDs = resp.data.decode().split('\n')

if(strTLD.upper() in strValidTLDs):

 print ("TLD FOUND!")

else:

 print ("TLD NOT FOUND!")

अक्षि@थ कंट्रान्स.भारत
<LOCAL_PART>@<DOMAIN_NAME>.<TOP_LEVEL_DOMAIN>

Take appropriate
action here as per your

code logic

SAMPLE
INPUT

OUTPUT

AMAZON TLD FOUND!

XN--H2BRJ9C TLD FOUND!

ABCDE TLD NOT
FOUND!

CAUTION: CONVERT U-LABEL TO
A-LABEL BEFORE CALLING THIS!

For IDN TLDs, always
convert them to their
Punycode equivalent,

uppercase, before
checking

49

Python 3: Socket, Hostname Resolution

socket.gethostbyname(hostname)

socket.getaddrinfo(host, port, family=0, type=0, proto=0, flags=0)

Does not support IPV6
Addresses

Supports IPV4/IPV6 dual stack

• Both above methods take A-label as well as the U-label
as the host name.

• Raises “exception socket.gaierror” if provided Punycode
instead of the U-label.

50

Python 3: Socket, IP Resolution

socket.getfqdn([name])

socket.gethostbyaddr(ip_address)

Returns a fully qualified domain name
for name. If name is omitted or empty, it is

interpreted as the local host.

Returns a triple (hostname, aliaslist,
ipaddrlist). Supports both IPV4 and IPV6

Addresses

• Both above methods take the U-label as the host name.

• Raises “exception socket.gaierror” if provided Punycode
instead of the U-label.

51

Major UA Challenges

• Some applications are still verifying domain names

incorrectly by using one of the outdated methods:

• Check for a fixed length of TLD between 2-4 characters (TLD

can be up to 63 characters).

• Check from a fixed set of TLDs, e.g., using static list of

strings.

• Check for only ASCII characters.

• Some applications do not cater to additional requirements

for validating EAI:

• Check mailbox name to be a valid string in UTF-8 format.

• DomainName can be ASCII or IDN.

52

UA-Readiness Testing Framework

AT: Accept test

VT: Validate test

P1T: Process test on the input

ST: Store test

P2T: Process test on the output

DT: Display test

Detailed UA-Readiness Testing Framework is available in the form of a
Technical Guide UASG026 here.

https://uasg.tech/download/uasg-026-ua-readiness-framework-en/?wpdmdl=3684&refresh=61ae45008f60b1638810880

53

Validating User Input

• Validating user input, or any input, is extremely useful for

various reasons, some of which include: a better user

experience, increased security, and avoiding irrelevant issues.

• Validating domain names and email addresses is useful.

• Some validation methods for domain names and email

addresses:

• Basic syntax checks: is the syntax of the string correct?

• Does the domain name contain ‘.’ ?

• Does the email address contain ‘@’ and a valid domain

name part?

• Functional checks: does the domain name or email address

work?

• Is the top-level domain (TLD) in use?

• Is the whole domain name in use?

• Is the email in use?

54

Validating Domain Names

Validating syntax:

• ASCII: RFC1035

• Composed of letters,

digits, and hyphen.

• Max length is 255 octets

with each label up to 63

octets.

• IDN: IDNA2008 (RFCs 5890-

5894)

• Valid A-labels

• Valid U-labels

Validating function:

• Is the TLD in use?

• Verify against the list of

TLDs.

• Verify using a DNS

request.

• Is the whole domain name in

use?

• Verify using a DNS

request.

55

Validating Email Addresses

Validating syntax:

• An email address is
composed of:
mailboxName@domainName

• Validating syntax:

• For domainName, see
earlier discussion.

• For mailboxName:

• ASCII

• UTF8 (for EAI)

Validating function:

• Is the domain name set
up to send and receive
emails?

• Is the mailbox name able
to send and receive
emails?

Email Validation

57

Composition of an Email

<LOCAL PART> @ <DOMAIN NAME>

• Has to be validated as per the
general guidelines laid down in
the RFCs.

• A good guide to the same is
released by the UASG titled
“UASG 028 Considerations for
Naming Internationalized Email
Mailboxes EN” . It can be
accessed here.

• Has to be validated as per the
general “Domain Name
Validation” process, as
discussed.

https://uasg.tech/download/uasg-028-considerations-for-naming-internationalized-email-mailboxes-en/

58

Email Validation

Validating an Email is much more than just validating for certain
characters.

<LOCAL_PART>@<DOMAIN_NAME>.<TOP_LEVEL_DOMAIN>

Each of the above get governed by different sets of Internet
standards/processes.

LOCAL_PART: Gets governed by the policies of the Email Service

Providing Entity, typically the domain owning body.

Please refer to best practices recommended by the

UASG here.

DOMAIN_NAME: Gets governed by IETF Protocols (IDNA 2008) for

domain names.

TOP_LEVEL_DOMAIN: IANA TLD Repository

https://uasg.tech/download/uasg-028-considerations-for-naming-internationalized-email-mailboxes-en/?wpdmdl=3687&refresh=61aee049486d71638850633
https://data.iana.org/TLD/tlds-alpha-by-domain.txt

59

Email Validation

• A python developer should avoid the temptation of using an
“re” package and begin the first attempts at validating an email
address with naïve RegEx’s like below:

'^[a-z0-9]+[\._]?[a-z0-9]+[@]\w+[.]\w{2,3}$’

• For obvious reasons, in the context of IDNs, validating for only
“a-z” is a non-starter.

• So is validating domain name and top-level domain (TLD) with
a “\w”.

60

Email Validation

• Since individual parts of the email ID is governed by different

entities with different policies, it is best to delegate the

validation function of an email ID to a proper dedicated

library.

• The Python community is rich with options when it comes to

using open-source libraries which “just work”.

• Here are some of the options at hand:

• email-validator 1.0.5

• pylsEmail 1.3.2

61

Email Validation

email-validator: (Current version 1.1.3)

• Basic syntax checking

• Checks resolvability

• Supports IDN email by including SMTPUTF8 in resolvability

check and Internationalized Local part check

• For storing email addresses, provides “Normalization”

option

• Complies with IDNA2008

Installation: pip install email-validator

62

Email Validation

email-validator: (Current version 1.1.3)

• Checks if the domain part of the email resolves to a valid
domain name.

>>from email_validator import validate_email, EmailNotValidError

>>valid = validate_email("user@mydomain.tld")

>>print(valid.email)

The domain name mydomain.tld does not exist.

>>valid = validate_email("propriétaire@rhône.hôtel")

>>print(valid.email)

propriétaire@rhône.hôtel

about:blank
about:blank
about:blank

63

Email Validation

email-validator: (Current version 1.1.3)

• Provides normalized form of the email part

• This example uses a non-NFC character

• a + ̂ (U+0061 + U+0302) (Normalizes to â – U+00E2)

>>from email_validator import validate_email, EmailNotValidError

>>valid = validate_email("utilizator@exâmple.ca")

>>print(valid.email)

>>print(email)

"utilizator@exâmple.ca"
Non-Normalized

String

Normalized
String

64

Email Validation

pylsEmail : (Current version 1.3.2)

• This package is supposed to be doing purely protocol
checking for an email.

• However, it does not seem to support EAI at the moment.

>>from pyisemail import is_email

>>address = "utilizator@exâmple.ca"

>>bool_result = is_email(address)

>>detailed_result = is_email(address, diagnose=True)

>>print(bool_result)

>>print(detailed_result)

False

<InvalidDiagnosis: EXPECTING_ATEXT>

65

Test Cases for IDNs and Internationalized
Email Addresses

Available in: “UASG 004 Use Cases for UA Readiness Evaluation EN”

Link: https://uasg.tech/download/uasg-004-use-cases-for-ua-
readiness-evaluation-en/

https://uasg.tech/download/uasg-004-use-cases-for-ua-readiness-evaluation-en/
https://uasg.tech/download/uasg-004-use-cases-for-ua-readiness-evaluation-en/

66

Mail Software and Services

EAI Support
▪MailMate (MUA) on MacOSX: v.1.9.4 minimum
▪Postfix (SMTP) v3.0 minimum

•http://www.postfix.org/SMTPUTF8_README.html
▪Courier (IMAP, POP, SMTP) v1.0 minimum (IMAP version 5.0.8)

EAI NOT supported (as of October 2019):
▪Dovecot (IMAP, POP)
▪Zimbra
▪Mozilla Thunderbird

Services supporting EAI
▪Gmail
▪Outlook

More info in UASG021A available at www.uasg.tech

67

Conclusion

❑EAI is essentially supporting UTF-8 local parts of an email address.
▪Which also means supporting in the headers.
▪Requires changes to mail servers and mail clients.

❑All SMTP servers in the path must be EAI-enabled to deliver the mail to the
destination.

❑Courier and Postfix are two open-source software that support EAI with very
limited changes in configuration.

❑In configuration files, be careful to use A-labels, U-labels, or both, depending
on the situation.

68

Additional Information for EAI, IDNs, UA

❑Universal Acceptance Steering Group (UASG)
https://uasg.tech
https://www.icann.org/ua

❑Internationalized Domain Names (IDNs)
http://icann.org/idn

❑UASG028​ : Consider​ations for Naming In​ternationalized Emai​l Mailboxes

•The document is intended for email systems administrators to help them
provision mailboxes, configure, and manage systems compatible with
internationalized email addresses.

•It outlines the considerations for naming internationalized mailboxes and
helps administrators make good choices when setting their mailbox
names policy.

https://uasg.tech/
https://www.icann.org/ua
https://www.icann.org/ua

69

70

	UA Template
	Slide 1: Email Address Internationalization (EAI) Configuration and Technical Overview हरीश चौधरी (Harish Chowdhary), UA Ambassador मेल@ईंटरनेट.भारत, Intern3tgovernance@gmail.com
	Slide 2
	Slide 3: Key Fundamental Aspects : Unicode, IDNs, UA
	Slide 4: Domain Names
	Slide 5: Types of Domain Names
	Slide 6: Internationalized Domain Names (IDNs)
	Slide 7: Internationalized Domain Names
	Slide 8: Universal Acceptance (UA)
	Slide 9: How to Quantify Universal Acceptance
	Slide 10
	Slide 11: What Comes Under the UA Ambit?
	Slide 12: Anatomy of an IDN and Internationalized Email
	Slide 13: Actions to be Performed on a Domain Name
	Slide 14: Basics of Unicode and its Forms
	Slide 15: Email Terminology
	Slide 16: Internationalized Email Acceptance Rate
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Enabling UA the Python Way Coding for UA compliant domain and email validators
	Slide 31: About Python Programming Language
	Slide 32: Python 2: Datatypes and Unicode Enablement
	Slide 33: Python 3: Datatypes and Unicode Enablement
	Slide 34: Unicode Normalization
	Slide 35: IDNA Conversion
	Slide 36: IDNA Conversion – IDNA Package
	Slide 37: Storing as U-Label or A-Label
	Slide 38: Displaying the Unicode Properly
	Slide 39: Displaying Scripts from Right-to-Left (RTL)
	Slide 40: Validators Domain and Email Validation
	Slide 41: Domain Name Validation
	Slide 42: Domain Validation
	Slide 43: Domain Validation
	Slide 44: Domain Validation
	Slide 45: Domain Validation
	Slide 46: Domain Validation
	Slide 47: TLD Validation
	Slide 48: TLD Validation
	Slide 49: Python 3: Socket, Hostname Resolution
	Slide 50: Python 3: Socket, IP Resolution
	Slide 51: Major UA Challenges
	Slide 52: UA-Readiness Testing Framework
	Slide 53: Validating User Input
	Slide 54: Validating Domain Names
	Slide 55: Validating Email Addresses
	Slide 56: Email Validation
	Slide 57: Composition of an Email
	Slide 58: Email Validation
	Slide 59: Email Validation
	Slide 60: Email Validation
	Slide 61: Email Validation
	Slide 62: Email Validation
	Slide 63: Email Validation
	Slide 64: Email Validation
	Slide 65: Test Cases for IDNs and Internationalized Email Addresses
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

