SONDG41

April 2024

Some Performance Tweaks for SP Network Presented By: Priya Ranjan Karn

Agenda

MUMBAI

• Challenges Faced By Service Providers

- IGP convergence time
- Increasing Labels within the SP Network
- Suboptimal Unicast Routing
- Optimal Performance of RR (Route-Reflector)
- Increasing size of Global Routing Table
- Need for IPv6 and dual stack networks
- Load Balancing and Redundancy in Multicast Network
- Some Strategies to adopt for Overcoming the Challenges (Based on several tests and implementation within an SP Network)
 - Speeding Your IGP Convergence with LFA
 - Filters to limit labels assignment for IGP routes
 - uRPF
 - BGP Table-Map
 - BGP Route Aggregation
 - 6PE and 6VPE
 - Anycast RP

SONDG 41

Interverk Operators Group

Loop Free Alternate (LFA)

<u>Challenge</u>

- Even after detecting a failure of the current path, the IGP(OSPF/IS-IS) still have to run the SPF to choose the next available best path.
- This results in delay for packet forwarding to restart.
- IGP's like OSPF/IS-IS doesn't have concept of feasible successors or backup path.

<u>Solution</u>

- LFA helps IGP's to find and install usable backup loop free paths, which helps to quickly switch (within 50 ms) to a backup path when primary path fails.
- LFA helps the Packet Forwarding Engine to correct a path failure before it receives recomputed path from Routing Engine.
- LFA can be configured in two ways for the IGPs.

<u>Per-Link</u>

- IGP calculates a backup next hop for all prefixes that uses the same link (same next-hop).
- Advantage is, it consumes fewer CPU cycles and memory than Per-Prefix LFA.
- Disadvantage however, is that once the primary link fails, suddenly put a lot of burden to the backup link.

Loop Free Alternate (LFA)

CISCO(config)# router ospf 1 CISCO(config-ospf)# address-family ipv4 CISCO(config-ospf)# area 0 CISCO(config-ospf-ar)# fast-reroute per-link

Per-Prefix

SQINDU

- IGP calculates an LFA path for every individual prefixes.
- Disadvantage is, It requires more CPU cycles and memory.
- Advantage is, offers better load balancing as traffic is spread across to different backup paths.

IMRA

CISCO(config)#router ospf 1 CISCO(config-ospf)#address-family ipv4 CISCO(config-ospf)#area 0 CISCO(config-ospf-ar)#fast-reroute per-prefix

Loop Free Alternative (LFA)

Before Enabling LFA

RP/0/RP0/CPU0:CISCO#show route 172.20.0.1 Sun Mar 10 10:18:36.965 NPT

41

SONDG

Routing entry for 172.20.0.1/32 Known via "ospf 1", distance 110, metric 4, type intra area Installed Mar 10 10:18:28.587 for 00:00:08 Routing Descriptor Blocks 172.30.30.13, from 172.20.0.1, via TenGigE0/0/0/0.3 Route metric is 4 No advertising protos. RP/0/RP0/CPU0:CISCO#

After Enabling LFA

RP/0/RP0/CPU0:CISCO#show route 172.20.0.1 Sun Mar 10 10:19:21.202 NPT

Routing entry for <u>172.20.0.1/32</u> Known via "ospf 1", distance 110, metric 4, type intra area Installed Mar 10 10:19:18.060 for 00:00:03 Routing Descriptor Blocks 172.30.30.13, from 172.20.0.1, via TenGigE0/0/0/0.3, Protected Route metric is 4 172.30.30.26, from 172.20.0.1, via TenGigE0/0/0/1.5, Backup (Local-LFA) Route metric is 0 No advertising protos. RP/0/RP0/CPU0:CISCO#

Label Allocation

<u>Challenge</u>

- Service Provider's might have some edge devices which are not capable of handling higher number of labels, which can cause scaling issue.
- As we know, by default LDP allocates labels for all IGP learned routes, resulting unwanted label assignments in the SP core.

Solution

- Forwarding in MPLS requires labels only for PE's loopback addresses.
- Label allocation filtering can help SP's for temporary scaling their MPLS network.
- There are two options to accomplish this:

Allocate global **Prefix-list**- Allocates label for only those routes that match the prefix-list Allocate global **Host-route**- Allocates labels for only for IGP learned route that are **/32**.

CISCO(config)#mpls ldp CISCO(config-ldp)#address-family ipv4 label local allocate for host-routes

OR

CISCO(config-ldp)#address-family ipv4 label local allocate for HOST -----

where, HOST is a prefix-list or access-list

Label Allocation

Default Label Allocation

After Applying Filter

R1#show	mpls forwardi	ng-table				R1#show mp	ols forwardi	.ng-table			
Local Label	Outgoing Label	Prefix or Tunnel Id	Bytes Label Switched	Outgoing interface	Next Hop	Local Label	Outgoing Label	Prefix or Tunnel Id	Bytes Label Switched	Outgoing interface	Next Hop
100		4.4.4.4/32	3700	Gi2/0	10.10.14.2	100		4.4.4.4/32	4643	Gi2/0	10.10.14.2
101		2.2.2.2/32	0	Gi1/0	10.10.12.2						
102		10.10.45.0/30	0	Gi2/0	10.10.14.2	101	Pop Label	2.2.2.2/32	0	Gi1/0	10.10.12.2
		10.10.45.0/30	0	Gi4/0	10.10.15.2	107	202	3.3.3.3/32	0	Gi1/0	10.10.12.2
103	Pop Label	10.10.56.0/30	Ø	Gi4/0	10.10.15.2	108	515	6.6.6.6/32	0	Gi4/0	10.10.15.2
104	Pop Label	10.10.25.0/30	0	Gi1/0	10.10.12.2	110					
	Pop Label	10.10.25.0/30	0	Gi4/0	10.10.15.2				0	Gi4/0	10.10.15.2
105	Pop Label	10.10.23.0/30	Ø	Gi1/0	10.10.12.2	112_	503	4.4.4.4 3 [93]	0	Gi4/0	10.10.15.2
107	202	3.3.3/32	0	Gi1/0	10.10.12.2	R1#					
108	504	6.6.6/32	0	Gi4/0	10.10.15.2	_					
109	209	10.10.36.0/30	0	Gi1/0	10.10.12.2						
	508	10.10.36.0/30	0	Gi4/0	10.10.15.2						
110	Pop Label	5.5.5/32	0	Gi4/0	10.10.15.2						
112	503	4.4.4.4 3 [93]	0	Gi4/0	10.10.15.2						
R1#											

MUMBAI

Unicast Reverse Path Forwarding (uRPF)

<u>Challenge</u>

- Generally when the router receives a unicast IP packet, it only cares about one thing, the destination address.
- It is possible for the attackers to exploit this behavior and spoof the source IP address to send packets that would have otherwise been dropped by the firewall or an access-list.
- Results in Suboptimal Routing and computing overhead for the transit routers most of the times.

<u>Solution</u>

- uRPF feature prevents above mentioned spoofing attacks.
- It helps Routers to drop packets whose source address is unknow to them at the edge of the network.

Unicast Reverse Path Forwarding (uRPF)

- uRPF can be configured to an interface of the router in one of below modes.
- Strict mode: Strict mode performs two checks for all incoming packets on an interface before forwarding them
 - Do I have a matching entry for the source in the routing table?

AND

- Do I use the same interface to reach this source as which I received this packet?
- Generally not feasible for SP network, as they have asymmetric traffic flows.

CISCO(config)#interface HundredGigE0/0/1/0 CISCO(config-if)#ipv4 verify unicast source reachable-via rx

• Loose Mode: Loose mode will perform only a single check when it receive an IP packet on an uRPF configured interface.

MIIMBAI

- Do I have a matching entry for the source in the routing table?
- Feasible for SP network as it helps in optimal routing for edge and transit devices.

CISCO(config)#interface HundredGigE0/0/1/0 CISCO(config-if)#ipv4 verify unicast source reachable-via any

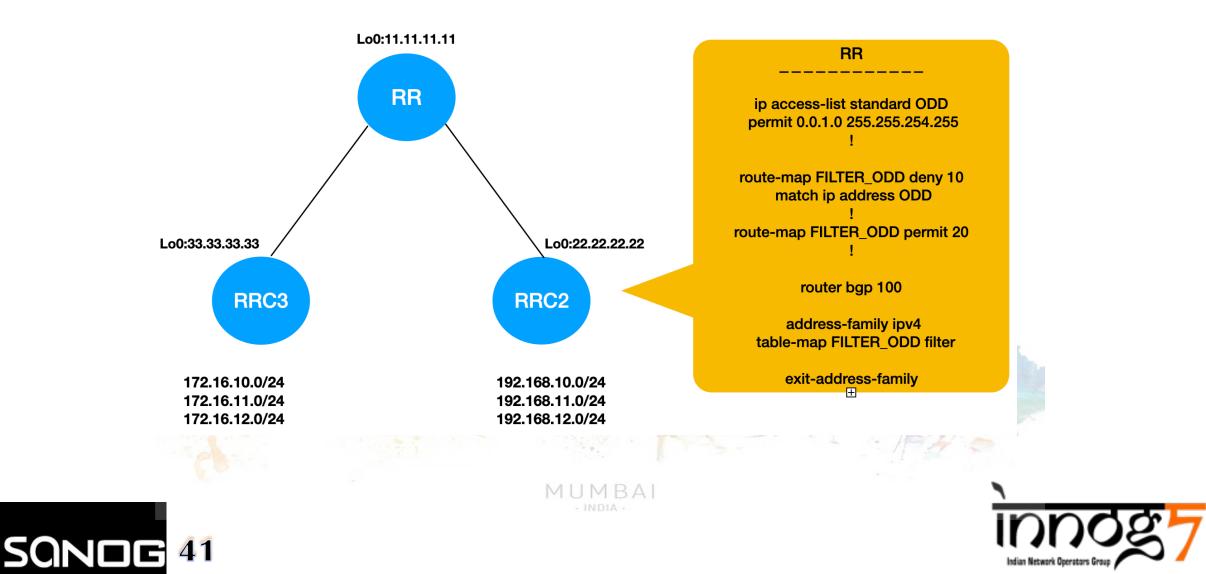
SONDG 41

BGP Table-Map

<u>Challenge</u>

- Unnecessary downloading or installing of certain BGP routes to the RIB or FIB on a RR(Route-Reflector), which is not on the data plane.
- Making use of routers that are fit for compute but not for traffic forwarding.

Solution


- BGP table-map is a feature that allows us to filter the BGP routes marked for installation into the RIB.
- A scenario where we could use table-map could be an RR that doesn't need to be in the data plane but has to host the control plane).
- Optimizes the performance of RR's.

BGP Table-Map

BGP Table-Map

RR's BGP Table

RR#show ip bgp

BGP table version is 7, local router ID is 11.11.11.11 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter, x best-external, a additional-path, c RIB-compressed, Origin codes: i - IGP, e - EGP, ? - incomplete RPKI validation codes: V valid, I invalid, N Not found

	Network	Next Hop	Metric	LocPrf	Weight	Path
*>i	172.16.10.0/24	33.33.33.33	0	100	0	?
*>i	172.16.11.0/24	33.33.33.33	0	100	0	?
*>i	172.16.12.0/24	33.33.33.33	0	100	0	?
*>i	192.168.10.0	22.22.22.22	Ø	100	0	?
*>i	192.168.11.0	22.22.22.22	0	100	0	?
*>i	192.168.12.0	22.22.22.22	0	100	0	?
RR#						

RRC1 RIB

R3#show ip route bgp

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP + - replicated route, % - next hop override

Gateway of last resort is not set

SONDG 41

В	192.168.10.0/24	[200/0]	via	22.22.22.22,	00:39:40
В	192.168.11.0/24	[200/0]	via	22.22.22.22,	00:39:40
В	192.168.12.0/24	[200/0]	via	22.22.22.22,	00:39:40
R3#					

RR's RIB

RR#show ip route bap Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, NZ - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP + - replicated route, % - next hop override

Gateway of last resort is not set

	172.16.0.0/24 is subnetted, 2 subnets
В	172.16.10.0 [200/0] via 33.33.33.33, 00:27:24
В	172.16.12.0 [200/0] via 33.33.33.33, 00:27:24
В	192.168.10.0/24 [200/0] via 22.22.22.22, 00:27:24
В	192.168.12.0/24 [200/0] via 22.22.22.22, 00:27:24
RR#	

RRC2 RIB

R2#show ip route bap Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP + - replicated route, % - next hop override

Gateway of last resort is not set

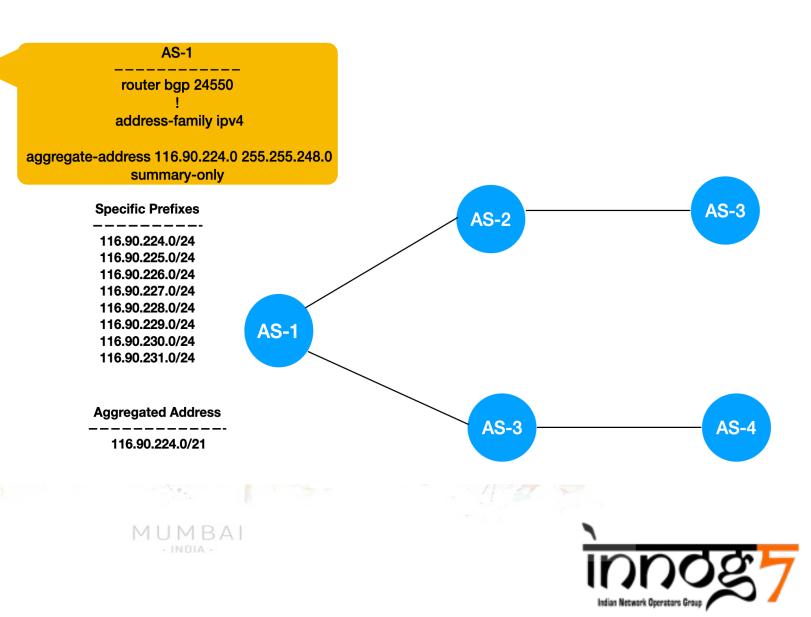
172.16.0.0/24 is subnetted, 3 subnets В 172.16.10.0 [200/0] via 33.33.33.33, 00:39:01 В 172.16.11.0 [200/0] via 33.33.33.33, 00:39:01 В 172.16.12.0 [200/0] via 33.33.33.33, 00:39:01 R2#

BGP Route Aggregation

Challenge

- Increasing size of Global routing table.
- Routing instability due to flapping routes.

Solution


- Route Aggregation decreases the size of the global routing table.
- Route Aggregation can help in rapid routing table lookups and prevent TCAM resource exhaustion for network devices.
- Also Route Aggregation positively impacts routing stability.

BGP ROUTE AGGREGATION

- If AS-1 router advertised de-aggregated prefixes to its e-BGP peers.
- And If any of customer link goes down, AS-1 will advertises the withdrawal of prefix to its eBGP Peers.
- As a result, all internet routers with full BGP table view removes network from their FIB table, which in turn adds to their compute load.
- Again if the customer link comes up, the prefix is re-injected to AS-1 and readvertised to its eBGP peers, however connectivity to the internet might not be immediately available for the customer due to BGP propagation delays.
- Now if AS-1 advertises aggregates to its eBGP peers and if any prefix becomes unreachable, the prefix will only be withdrawn from iBGP of AS-1.
- The routing tables of the upstream are not impacted as there are no network updates sent from AS-1 to its eBGP Peers.

6PE and 6VPE

<u>Challenge</u>

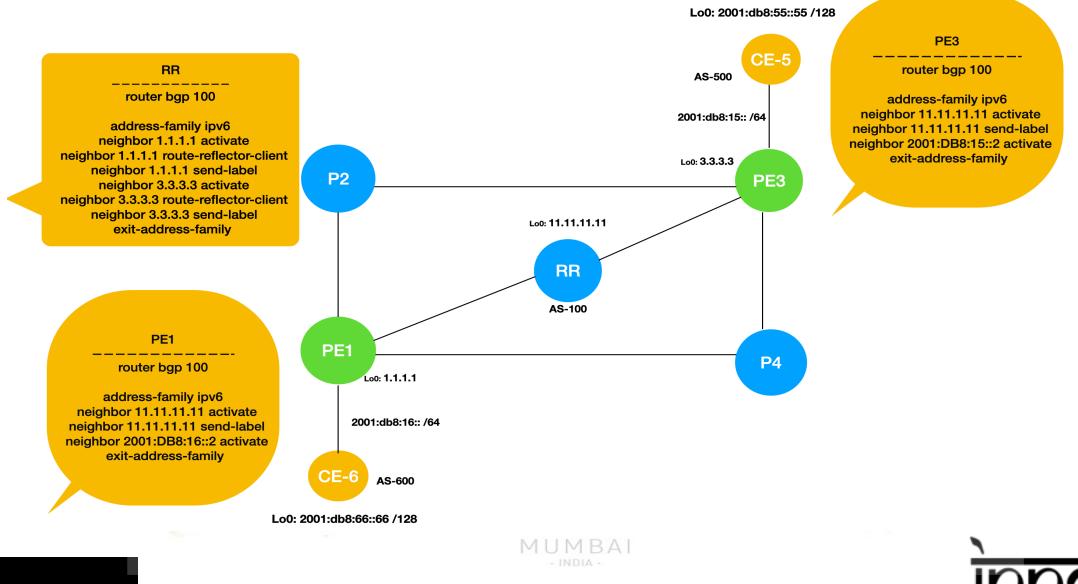
- Need to deliver IPv6 Services over and IPv4-only MPLS Core.
- One way of doing to would be to move to a dual stack solution.
- It would involve implementing an IPv6 IGP, MP-BGP and IPv6 LDP (or MPLS-TE) for you 'n' number of MPLS boxes.
- Other work around would be supporting IPv6 over the same IPv4 MPLS network with minimal changes.

Solution

- 6PE (RFC-4798) and 6VPE (RFC-4659) allows us to run IPv6 over an IPv4-only MPLS core where only the PE's are dual stack.
- Minimal operational, capital cost and risk as no impact on existing IPv4 and MPLS services.
- MPLS Provider Routers (P) doesn't need to be IPv6 aware.
- Only Provider Edge (PE) requires upgrade as 6PE and 6VPE router can be the existing PE router
- Both 6PE and 6VPE exploit the fact that as long as a packet somehow can be forwarded along an LSP from ingress to egress PE, P routers
 do not care about anything but the transport label.

6PE (IPv6 Provider Edge)

- 6PE uses the global IPv6 routing table on the PE(i.e. the peering to the CE is under address-family ipv6 unicast).
- The neighborship between PE's is also under address-family ipv6 unicast.
- However the peers are an IPv4 address with **send-label** (**send NLRI + MPLS label to the peer**) enabled.
- The LSP's between the PE is based on the IPv4 so the next hop addresses are IPv4 addresses.
- When a PE router advertises an IPv6 prefix through MP-BGP to another PE, it embeds the IPv4 address in the IPv6 next hop address.
- This is how a PE knows which IPv4 address (and thus which label) to use to get to the other PE.
- A value of ::FFFF: is prepended to the IPv4 next hop, which is an IPv4-mapped IPv6 address.



MUMBAI

6PE (IPv6 Provider Edge)

SONDG 41

6PE-PE's Output

MUMBAI

PE-1

PE-3

Neighbor	V	AS M	IsaRcvd	MsaSent	TblVer	In0	Out0	Up/Down	State/PfxRcd
11.11.11.11	4	100	11	10	5	0		00:05:31	2
2001:DB8:16::2	4	600	10	10	5	0	0	00:06:13	2

PE3#show bgp ipv6 unicast summary | exclude BGP 4 network entries using 672 bytes of memory 4 path entries using 416 bytes of memory

Neighbor	٧	AS	MsgRc∨d	MsgSent	TblVer	InQ	0utQ	Up/Down	State/PfxRcd	
11.11.11.11	4	100	13	12	5	0	0	00:07:33	2	
2001:DB8:15::2	4	500	12	12	5	0	0	00:08:17	2	
PE3#										

PE1#show bgp ipv6 unicast	
BGP table version is 5, local router ID is 1.1.1.1	
Status codes: s suppressed, d damped, h history, * va	lid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b	backup-path, f RT-Filter,
x best-external, a additional-path, c R	IB-compressed,
Origin codes: i - IGP, e - EGP, ? - incomplete	
RPKI validation codes: V valid, I invalid, N Not foun	d

	Network	Next Hop	Metric Lo	ocPrf Wei	ght Path
*>i	2001:DB8:15::/64	::FFFF:3.3.3.3	0	100	0 500 ?
r>	2001:DB8:16::/64	2001:DB8:16::2	0		0 600 ?
*>i	2001:DB8:55::55/2	128			
		::FFFF:3.3.3.3	0	100	0 500 ?
*>	2001:DB8:66::66/	128			
		2001:DB8:16::2	0		0 600 ?
PE1#					

SONDG 41

r>	Network 2001:DB8:15::/64	Next Hop 2001:DB8:15::2	Metric 0	LocPrf	Weight Ø	Path 500	
*>i	2001:DB8:16::/64	::FFFF:1.1.1.1	0	100	0	600	?
*>	2001:DB8:55::55/2	128					
		2001:DB8:15::2	(0	6	500	?
*>i	2001:DB8:66::66/2	128					
		::FFFF:1.1.1.1	(0 10	0 0	600	?
PE3#							

Internet Operators Group

6PE-CE's Output

MUMBAI

CE-5

CE-5#ping 2001:DB8:66::66 source lo0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 2001:DB8:66::66, timeout is 2 seconds: Packet sent with a source address of 2001:DB8:55::55 !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 60/258/944 ms CE-5# CE-5# CE-5# CE-5#tracer CE-5#tracer CE-5#traceroute 2001:DB8:66::66 Type escape sequence to abort. Tracing the route to 2001:DB8:66::66 1 2001:DB8:15::1 92 msec 32 msec 28 msec 2 ::FFFF:10.10.34.2 [MPLS: Labels 22/24 Exp 0] 128 msec 64 msec 56 msec

3 2001:DB8:16::1 [AS 600] [MPLS: Label 24 Exp 0] 268 msec 124 msec 112 msec

4 2001:DB8:16::2 [AS 600] 164 msec 72 msec 132 msec

CE-5#

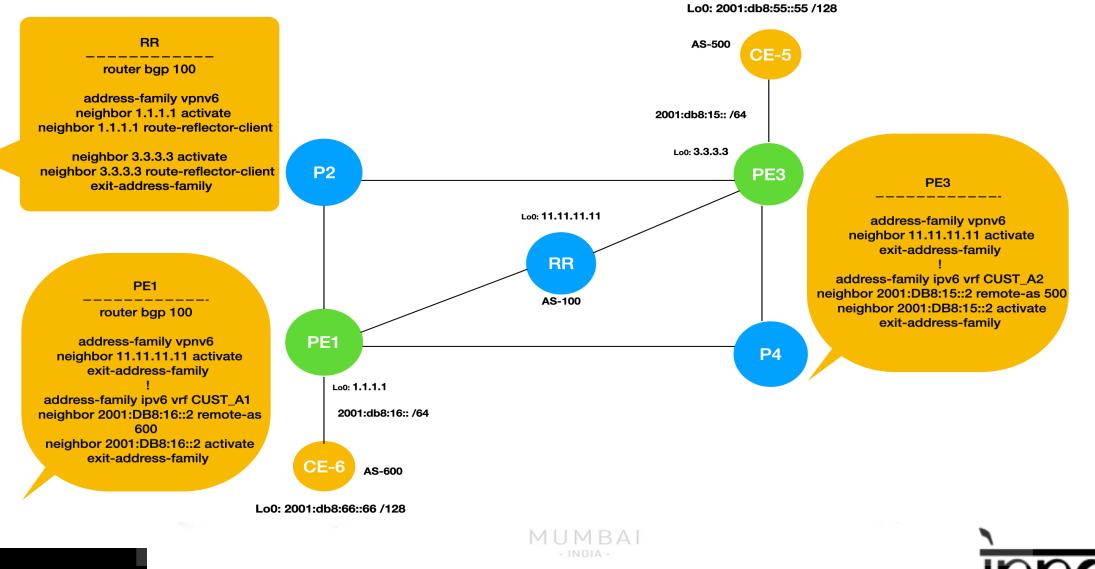
SONDG 41

CE-6

CE-6#ping 2001:DB8:55::55 so lo0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:55::55, timeout is 2 seconds:
Packet sent with a source address of 2001:DB8:66::66
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 60/184/356 ms
CE-6#
CE-6#
CE-6#
CE-6#
CE-6#traceroute 2001:DB8:55::55
Type escape sequence to abort.
Tracing the route to 2001:DB8:55::55

1 2001:DB8:16::1 168 msec 28 msec 12 msec 2 ::FFFF:10.10.14.2 [MPLS: Labels 16/24 Exp 0] 272 msec 136 msec 72 msec 3 2001:DB8:15::1 [AS 500] [MPLS: Label 24 Exp 0] 272 msec 56 msec 96 msec 4 2001:DB8:15::2 [AS 500] 88 msec 16 msec 152 msec CE-6#

6VPE (IPv6 VPN Provider Edge)


- 6VPE uses VRF's on the PE (i.e. the peering to the CE is under address-family ipv6 vrf <vrf_name>).
- The neighborship between PE's is under **address-family vpnv6 unicast** but the peers being an IPv4 address.
- The LSP's between the PE is based on the IPv4 so the next hop addresses are IPv4 addresses.
- When a PE advertises an IPv6 prefix through MP-BGP to another PE , it embeds the IPv4 address in the IPv6 next hop address.
- This is how the PE knows which IPv4 address (and thus which label) to use to get to the other PE.
- A value of ::FFFF: is prepended to the IPv4 next hop, which is an IPv4-mapped IPv6 address.

MUMBAI

6VPE (IPv6 VPN Provider Edge)

SONDG 41

6VPE-PE's Output

PE-1

PE-3

PE1#show bgp vpnv6 unicast all summary ex PE1#show bgp vpnv6 unicast all summary exclu 6 network entries using 1080 bytes of memory 6 path entries using 648 bytes of memory	de BGP		PE3#show bgp vpnv6 unicast all summary exclude BGP 6 network entries using 1080 bytes of memory 6 path entries using 648 bytes of memory
Neighbor V AS MsgRcvd MsgSent 11.11.11.11 4 100 35 34 2001:DB8:16::2 4 600 32 31	11 0	OutQ Up/Down State/ 0 00:26:59 0 00:24:20	PfxRcd Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 2 11.11.11.11 4 100 49 36 7 0 00:27:25 2 2 2001:DB8:15::2 4 500 39 39 7 0 00:31:50 2
<pre>PE1#show bgp vpnv6 unicast all BGP table version is 11, local router ID i Status codes: s suppressed, d damped, h hi</pre>	story, * valio ltipath, b bao l-path, c RIB lete	ckup-path, f RT-Fi	
Network Next Hop	Metric LocPrf	Weight Path	Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 1:6 (default for vrf *>i 2001:DB8:15::/64 ::FFFF:3.3.3.3	CUST_A1) 0 100	0 500 ?	Route Distinguisher: 1:6 *>i 2001:DB8:16::/64 ::FFFF:1.1.1.1 0 100 0 600 ? *>i 2001:DB8:66::66/128
<pre>r> 2001:DB8:16::/64 2001:DB8:16::2 *>i 2001:DB8:55::55/128 ::FFFF:3.3.3.3</pre>	0 0 10	0 600 ? 0 0 500 ?	::FFFF:1.1.1.1 0 100 0 600 ? Route Distinguisher: 3:5 (default for vrf CUST_A2) r> 2001:DB8:15::/64 2001:DB8:15::2 0 0 0 500 ?
*> 2001:DB8:66::66/128 2001:DB8:16::2	0	0 600 ?	*>i 2001:DB8:16::/64 ::FFFF:1.1.1.1 0 100 0 600 ? *> 2001:DB8:55::55/128
Route Distinguisher: 3:5 *>i 2001:DB8:15::/64 ::FFFF:3.3.3.3	0 100	0 500 ?	2001:DB8:15::2 0 0 500 ? *>i 2001:DB8:66::66/128
*>i 2001:DB8:55::55/128 ::FFFF:3.3.3.3	0 10		::FFFF:1.1.1.1 0 100 0 600 ? PE3#

MUMBAI

SONDG 41

6VPE-CE's Output

CE-5

CE-6#ping 2001:DB8:55::55 so lo0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:55::55, timeout is 2 seconds:
Packet sent with a source address of 2001:DB8:66::66
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 92/239/588 ms
CE-6#
CE-6#
CE-6#
CE-6#
CE-6#traceroute 2001:DB8:55::55
Type escape sequence to abort.
Tracing the route to 2001:DB8:55::55

1 2001:DB8:16::1 140 msec 24 msec 108 msec 2 ::FFFF:10.10.14.2 [MPLS: Labels 16/24 Exp 0] 272 msec 252 msec 148 msec 3 2001:DB8:15::1 [AS 500] [MPLS: Label 24 Exp 0] 144 msec 72 msec 72 msec 4 2001:DB8:15::2 [AS 500] 260 msec 100 msec 124 msec

CE-6# CE-6#

SONDG 41

CE-6

CE-5#ping 2001:DB8:66::66 source lo0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 2001:DB8:66::66, timeout is 2 seconds: Packet sent with a source address of 2001:DB8:55::55 !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 88/193/564 ms CE-5# CE-5# CE-5# CE-5# CE-5#traceroute 2001:DB8:66::66 Type escape sequence to abort. Tracing the route to 2001:DB8:66::66

1 2001:DB8:15::1 440 msec 228 msec 80 msec 2 ::FFFF:10.10.34.2 [MPLS: Labels 22/24 Exp 0] 264 msec 108 msec 68 msec 3 2001:DB8:16::1 [AS 600] [MPLS: Label 24 Exp 0] 260 msec 148 msec 68 msec 4 2001:DB8:16::2 [AS 600] 84 msec 64 msec 56 msec CE-5#

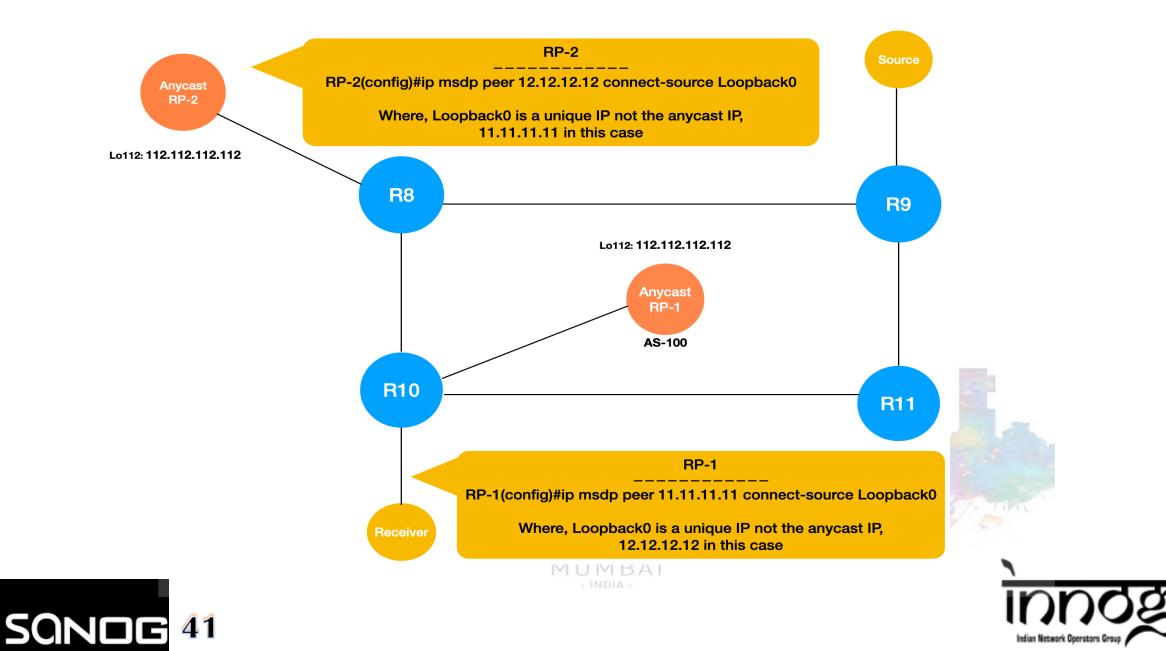
MUMBAI

Anycast RP (Rendezvous Point)

• An **RP (Rendezvous Point)** acts as the meeting place for sources and receivers for multicast data in multicast network.

<u>Challenge</u>

• Although there are multiple ways of achieving RP redundancy still the delay in case of failovers is based on the RP/BSR/MA advertisment intervals which are not fast (default upto 60 seconds).


<u>Solution</u>

- Anycast RP is the failover based on the IGP running in the multicast domain which be really fast (especially when used with BFD and LFA).
- Anycast RP solution also provides shared-tree load balancing among any number of active RPs in a multicast domain.
- RP's in the multicast domain share the same unicast IP address.
- PIM join/prune as well the source registration message are sent to the closest RP based on the unicast routing table.
- In order for all the RP's in the multicast domain to be synchronized with each other regarding PIM join/prune and source registration infromation, Anycast RP in conjunction with MSDP (Multicast Source Discovery Protocol) defined in RFC 3618 is to be used.

Anycast RP

QUESTIONS?

Thank YOU !!

